Tongzhao Zhang, Hongguang Ji, Xiaobo Su, Shuang You, Daolu Quan, Zhou Zhang, and Jinzhe Li, Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2117-2125. https://doi.org/10.1007/s12613-021-2381-4
Cite this article as:
Tongzhao Zhang, Hongguang Ji, Xiaobo Su, Shuang You, Daolu Quan, Zhou Zhang, and Jinzhe Li, Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2117-2125. https://doi.org/10.1007/s12613-021-2381-4
Research Article

Evaluation and classification of rock heterogeneity based on acoustic emission detection

+ Author Affiliations
  • Corresponding author:

    Hongguang Ji    E-mail: jihongguang@ces.ustb.edu.cn

  • Received: 1 September 2021Revised: 11 November 2021Accepted: 12 November 2021Available online: 16 November 2021
  • For deep rock mechanics and subsurface engineering, accurately characterizing and evaluating rock heterogeneity as well as analyzing the correlation between the heterogeneity and physical and mechanical properties of rocks are critical. This study investigated the characteristics of acoustic emission signals produced in the process of strong and weak phase damage to rocks. The failure mechanisms of the strong and weak phases were analyzed by performing Brazilian splitting tests on different metagabbros and granites. The strong–weak phase ratio of the rocks and the uniformity of their spatial distribution were characterized. Test results show that as the feldspar develops, the strong-phase ratio of the metagabbro increases. However, the spatial distribution of feldspar minerals in the metagabbro becomes less uniform. The mineral spatial distribution uniformity in the altered granite is good; however, its strong-phase ratio is low. Furthermore, the strong-phase ratio of the typical granite is high; however, its mineral spatial distribution uniformity is poor. Moreover, uniaxial and triaxial test results show that the peak strength and elastic modulus of the rocks are related to the strong–weak phase ratio and mineral spatial distribution uniformity of the rocks. This study provides a new analytical method for the mechanical evaluation of deep rocks.
  • loading
  • [1]
    Y.S. Zhao, Q.R. Meng, T.H. Kang, N. Zhang, and B.P. Xi, Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite, Chin. J. Rock Mech. Eng., 27(2008), No. 1, p. 28.
    [2]
    C.D. Martin and B. Stimpson, The effect of sample disturbance on laboratory properties of Lac du Bonnet granite, Can. Geotech. J., 31(1994), No. 5, p. 692.
    [3]
    Y.X. Zhao, S.M. Liu, G.F. Zhao, D. Elsworth, Y.D. Jiang, and J.L. Han, Failure mechanisms in coal: Dependence on strain rate and microstructure, J. Geophys. Res. Solid Earth, 119(2014), No. 9, p. 6924. doi: 10.1002/2014JB011198
    [4]
    D.K. Hallbauer, H. Wagner, and N.G.W. Cook, Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(1973), No. 6, p. 713. doi: 10.1016/0148-9062(73)90015-6
    [5]
    A. Tuğrul and I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey, Eng. Geol., 51(1999), No. 4, p. 303. doi: 10.1016/S0013-7952(98)00071-4
    [6]
    Ö. Ündül, Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks, Eng. Geol., 210(2016), p. 10. doi: 10.1016/j.enggeo.2016.06.001
    [7]
    Ö. Ündül, F. Amann, N. Aysal, and M.L. Plötze, Micro-textural effects on crack initiation and crack propagation of andesitic rocks, Eng. Geol., 193(2015), p. 267. doi: 10.1016/j.enggeo.2015.04.024
    [8]
    S. Cowie and G. Walton, The effect of mineralogical parameters on the mechanical properties of granitic rocks, Eng. Geol., 240(2018), p. 204. doi: 10.1016/j.enggeo.2018.04.021
    [9]
    S. Chen, Z.Q. Yue, and L.G. Tham, Digital image-based numerical modeling method for prediction of inhomogeneous rock failure, Int. J. Rock Mech. Min. Sci., 41(2004), No. 6, p. 939. doi: 10.1016/j.ijrmms.2004.03.002
    [10]
    Z.Q. Zhu, Q. Sheng, and X.D. Fu, Numerical simulation of fracture propagation of heterogeneous material, Appl. Mech. Mater., 170-173(2012), p. 581. doi: 10.4028/www.scientific.net/AMM.170-173.581
    [11]
    Q.S. Liu and Z.W. Wang, Review of numerical modeling based on digital image processing for rock mechanics applications, Chin. J. Rock Mech. Eng., 39(2020), No. S2, p. 3286.
    [12]
    A.K.H. Kwan, C.F. Mora, and H.C. Chan, Particle shape analysis of coarse aggregate using digital image processing, Cem. Concr. Res., 29(1999), No. 9, p. 1403. doi: 10.1016/S0008-8846(99)00105-2
    [13]
    Z.Q. Yue, S. Chen, and L.G. Tham, Finite element modeling of geomaterials using digital image processing, Comput. Geotech., 30(2003), No. 5, p. 375. doi: 10.1016/S0266-352X(03)00015-6
    [14]
    Z.Q. Yue, S. Chen, H. Zheng, and L.G. Tham, Digital image proceeding based on finite element method for geomaterials, Chin. J. Rock Mech. Eng., 23(2004), No. 6, p. 889.
    [15]
    S. Chen, Z.Q. Yue, and L.G. Tham, Digital image based numerical modeling method for heterogeneous geomaterials, Chin. J. Geotech. Eng., 27(2005), No. 8, p. 956.
    [16]
    S. Chen, Z.Q. Yue, and L.G. Tham, Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks, Rock Mech. Rock Eng., 40(2007), No. 2, p. 145. doi: 10.1007/s00603-006-0105-8
    [17]
    T. Lebourg, J. Riss, and E. Pirard, Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis, Eng. Geol., 73(2004), No. 1-2, p. 37. doi: 10.1016/j.enggeo.2003.11.004
    [18]
    W.J. Xu, Z.Q. Yue, and R.L. Hu, Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method, Int. J. Rock Mech. Min. Sci., 45(2008), No. 5, p. 749. doi: 10.1016/j.ijrmms.2007.09.003
    [19]
    O.K. Mahabadi, B.S.A. Tatone, and G. Grasselli, Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks, J. Geophys. Res. Solid Earth, 119(2014), No. 7, p. 5324. doi: 10.1002/2014JB011064
    [20]
    X. Tan, H. Konietzky, and W. Chen, Numerical simulation of heterogeneous rock using discrete element model based on digital image processing, Rock Mech. Rock Eng., 49(2016), No. 12, p. 4957. doi: 10.1007/s00603-016-1030-0
    [21]
    B. Chen, J.S. Xiang, J.P. Latham, and R.R. Bakker, Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the Brazilian Tensile Strength test using CT-Scan microstructure, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104348. doi: 10.1016/j.ijrmms.2020.104348
    [22]
    Y. Zhou, Y.T. Gao, S.C. Wu, Q. Yan, and H. Sun, An equivalent crystal model for mesoscopic behaviour of rock, Chin. J. Rock Mech. Eng., 34(2015), No. 3, p. 511.
    [23]
    X.J. Hu, K. Bian, J. Liu, B.Y. Li, and M. Chen, Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite, Chin. J. Rock. Mech. Eng., 38(2019), No. 10, p. 2069.
    [24]
    L.W. Liu, H.B. Li, X.F. Li, G.K. Zhang, and R.J. Wu, Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression, Chin. J. Geotech. Eng., 42(2020), No. 3, p. 542.
    [25]
    Y.T. Gao, T.H. Wu, and Y. Zhou, Application and prospective of 3D printing in rock mechanics: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 1. doi: 10.1007/s12613-020-2119-8
    [26]
    D. Lockner, The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1993), No. 7, p. 883. doi: 10.1016/0148-9062(93)90041-B
    [27]
    P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, H.F. Wang, and K. Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1217. doi: 10.1007/s12613-019-1887-5
    [28]
    S.H. Chang and C. Lee, Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission, Int. J. Rock Mech. Min. Sci., 41(2004), No. 7, p. 1069. doi: 10.1016/j.ijrmms.2004.04.006
    [29]
    J.P. Liu, Y.H. Li, S.D. Xu, S. Xu, and C.Y. Jin, Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission, Theor. Appl. Fract. Mech., 75(2015), p. 151. doi: 10.1016/j.tafmec.2014.12.006
    [30]
    X.G. Zhao, M. Cai, J. Wang, and L.K. Ma, Damage stress and acoustic emission characteristics of the Beishan granite, Int. J. Rock Mech. Min. Sci., 64(2013), p. 258. doi: 10.1016/j.ijrmms.2013.09.003
    [31]
    H.B. Zhao and G.Z. Yin, Study of acoustic emission characteristics and damage equation of coal containing gas, Rock Soil Mech., 32(2011), No. 3, p. 667.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(847) PDF Downloads(61) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return