Tongtong Zhang, Wenbo Yu, Chaosheng Ma, Yuqi Zhou,  and Shoumei Xiong, Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1310-1316. https://doi.org/10.1007/s12613-021-2386-z
Cite this article as:
Tongtong Zhang, Wenbo Yu, Chaosheng Ma, Yuqi Zhou,  and Shoumei Xiong, Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1310-1316. https://doi.org/10.1007/s12613-021-2386-z
Research Article

Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy

+ Author Affiliations
  • Corresponding authors:

    Wenbo Yu    E-mail: wbyu@bjtu.edu.cn

    Shoumei Xiong    E-mail: smxiong@tsinghua.edu.cn

  • Received: 7 September 2021Revised: 21 November 2021Accepted: 22 November 2021Available online: 25 November 2021
  • To clarify the relationship between externally solidified crystals (ESCs) and other defects, e.g., defect bands and pores, two dimensional (2D) and three dimensional (3D) characterization methods were adopted to analyze castings produced using a modified ingate system equipped with and without an ESC collector. The reduction of ESCs strongly reduced defect band width and shrinkage pore quantity. By reducing the quantity and size of ESCs, net-shrinkage pores were transformed into isolated island-shrinkage pores. We determined via statistical analysis that the mechanical properties of high pressure die castings were strongly related to the size and fraction of the ESCs rather than porosity volume. The reduction of ESCs also caused tensile transgranular fracture modes to transform into intergranular fracture modes. Additionally, casting pressurization strongly reduced pore morphology, volume, and size.
  • loading
  • [1]
    J. Rong, W.L. Xiao, X.Q. Zhao, C.L. Ma, H.M. Liao, D.L. He, M. Chen, M. Huang, and C. Huang, High thermal conductivity and high strength magnesium alloy for high pressure die cast ultrathin-walled component, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
    [2]
    G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding, Recent developments and applications on high-performance cast magnesium rare-earth alloys, J. Magnes. Alloys, 9(2021), No. 1, p. 1. doi: 10.1016/j.jma.2020.06.021
    [3]
    K.K. Wang, Y.L. Kang, and K. Zhang, Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D, J. Univ. Sci. Technol. Beijing, 9(2002), No. 5, p. 363.
    [4]
    H.I. Laukli, L. Arnberg, and O. Lohne, Effects of grain refiner additions on the grain structures in HPDC A356 castings, Int. J. Cast Met. Res., 18(2005), No. 2, p. 65. doi: 10.1179/136404605225022919
    [5]
    Z.M. Sheggaf, R. Ahmad, M.B.A. Asmael, and A.M.M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1306. doi: 10.1007/s12613-017-1523-1
    [6]
    J.P. Weiler, J.T. Wood, R.J. Klassen, E. Maire, R. Berkmortel, and G. Wang, Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy, Mater. Sci. Eng. A, 395(2005), No. 1-2, p. 315. doi: 10.1016/j.msea.2004.12.042
    [7]
    S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer, Variability in the tensile ductility of high-pressure die-cast AM50 Mg-alloy, Scripta Mater., 53(2005), No. 7, p. 851. doi: 10.1016/j.scriptamat.2005.06.002
    [8]
    S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer, Quantitative fractographic analysis of variability in the tensile ductility of high-pressure die-cast AE44 Mg-alloy, Mater. Sci. Eng. A, 427(2006), No. 1-2, p. 255. doi: 10.1016/j.msea.2006.04.108
    [9]
    W.B. Yu, Y.Y. Cao, X.B. Li, Z.P. Guo, and S.M. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol., 33(2017), No. 1, p. 52. doi: 10.1016/j.jmst.2016.02.003
    [10]
    R. Helenius, O. Lohne, L. Arnberg, and H.I. Laukli, The heat transfer during filling of a high-pressure die-casting shot sleeve, Mater. Sci. Eng. A, 413-414(2005), p. 52. doi: 10.1016/j.msea.2005.08.166
    [11]
    W.B. Yu, Y.Y. Cao, Z.P. Guo, and S.M. Xiong, Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition, China Foundry, 13(2016), No. 4, p. 269. doi: 10.1007/s41230-016-5137-4
    [12]
    S. Barbagallo, Shrinkage porosity in thin walled AM60 HPDC magnesium alloy U-shaped box, Int. J. Cast Met. Res., 17(2004), No. 6, p. 364. doi: 10.1179/136404604225022676
    [13]
    X.B. Li, Z.P. Guo, and S.M. Xiong, Influence of melt flow on the formation of defect band in high pressure die casting of AZ91D magnesium alloy, Mater. Charact., 129(2017), p. 344. doi: 10.1016/j.matchar.2017.05.009
    [14]
    W.B. Yu, C.S. Ma, Y.H. Ma, and S.M. Xiong, Correlation of 3D defect-band morphologies and mechanical properties in high pressure die casting magnesium alloy, J. Mater. Process. Technol., 288(2021), art. No. 116853. doi: 10.1016/j.jmatprotec.2020.116853
    [15]
    X. Li, S.M. Xiong, and Z. Guo, On the tensile failure induced by defect band in high pressure die casting of AM60B magnesium alloy, Mater. Sci. Eng. A, 674(2016), p. 687. doi: 10.1016/j.msea.2016.08.039
    [16]
    X. Li, S.M. Xiong, and Z. Guo, Failure behavior of high pressure die casting AZ91D magnesium alloy, Mater. Sci. Eng. A, 672(2016), p. 216. doi: 10.1016/j.msea.2016.07.009
    [17]
    Q.L. Wang and S.M. Xiong, Effect of multi-step slow shot speed on microstructure of vacuum die cast AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 2, p. 375. doi: 10.1016/S1003-6326(15)63613-5
    [18]
    S.G. Lee and A.M. Gokhale, Formation of gas induced shrinkage porosity in Mg-alloy high-pressure die-castings, Scripa Mater., 55(2006), No. 4, p. 387. doi: 10.1016/j.scriptamat.2006.04.040
    [19]
    B.D. Lee, U.H. Baek, and J.W. Han, Optimization of gating system design for die casting of thin magnesium alloy-based multi-cavity LCD housings, J. Mater. Eng. Perform., 21(2012), No. 9, p. 1893. doi: 10.1007/s11665-011-0111-1
    [20]
    D.R. Gunasegaram, M. Givord, R.G. O'Donnell, and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Mater. Sci. Eng. A, 559(2013), p. 276. doi: 10.1016/j.msea.2012.08.098
    [21]
    Y. Zhou, Z. Guo, and S.M. Xiong, Effect of runner design on the externally solidified crystals in vacuum die-cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, J. Mater. Process. Technol., 267(2019), p. 366. doi: 10.1016/j.jmatprotec.2018.12.032
    [22]
    X. Li, S.M. Xiong, and Z. Guo, Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy, J. Mater. Process. Technol., 231(2016), p. 1. doi: 10.1016/j.jmatprotec.2015.12.005
    [23]
    Z.X. Li, D.J. Li, W.K. Zhou, B. Hu, X.F. Zhao, J.Y. Wang, M. Qin, J.K. Xu, and X.Q. Zeng, Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2020.12.006
    [24]
    C.S. Ma, W.B. Yu, T.T. Zhang, Z.H. Zhang, Y.H. Ma, and S.M. Xiong, The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.09.011
    [25]
    Z.P. Guo, S.M. Xiong, M. Li, and J. Allison, Relationship between metal-die interfacial heat transfer coefficient and casting solidification rate in high pressure die casting process, Acta Metall. Sin., 45(2009), No. 1, p. 102.
    [26]
    J. Song, S.M. Xiong, M. Li, and J. Allison, The correlation between microstructure and mechanical properties of high-pressure die-cast AM50 alloy, J. Alloys Compd., 477(2009), No. 1-2, p. 863. doi: 10.1016/j.jallcom.2008.11.040
    [27]
    X. Sun, K.S. Choi, and D.S. Li, Predicting the influence of pore characteristics on ductility of thin-walled high pressure die casting magnesium, Mater. Sci. Eng. A, 572(2013), p. 45. doi: 10.1016/j.msea.2013.02.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1451) PDF Downloads(151) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return