Cite this article as: |
Wei Chen, Shenghua Yin, Qing Song, Leiming Wang, and Xun Chen, Enhanced copper recovery from low grade copper sulfide ores through bioleaching using residues produced by fermentation of agricultural wastes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2136-2143. https://doi.org/10.1007/s12613-021-2392-1 |
Shenghua Yin E-mail: csuysh@126.com
[1] |
X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
|
[2] |
S.H. Yin, W. Chen, X.L. Fan, J.M. Liu, and L.B. Wu, Review and prospects of bioleaching in the Chinese mining industry, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1397. doi: 10.1007/s12613-020-2233-7
|
[3] |
A. Elshkaki, T.E. Graedel, L. Ciacci, and B.K. Reck, Copper demand, supply, and associated energy use to 2050, Global Environ. Change, 39(2016), p. 305. doi: 10.1016/j.gloenvcha.2016.06.006
|
[4] |
B.W. Schipper, H.C. Lin, M.A. Meloni, K. Wansleeben, R. Heijungs, and E.v.d.Voet, Estimating global copper demand until 2100 with regression and stock dynamics, Resour. Conserv. Recycl., 132(2018), p. 28. doi: 10.1016/j.resconrec.2018.01.004
|
[5] |
Z.H. Sun, X.D. Xie, P. Wang, Y.A. Hu, and H.F. Cheng, Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China, Sci. Total. Environ., 639(2018), p. 217. doi: 10.1016/j.scitotenv.2018.05.176
|
[6] |
S.H. Yin, W. Chen, and Y.T. Wang, Effect of mixed bacteria on cemented tailings backfill: Economic potential to reduce binder consumption, J. Hazard. Mater., 411(2021), art. No. 125114. doi: 10.1016/j.jhazmat.2021.125114
|
[7] |
S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605. doi: 10.1016/j.biortech.2019.121605
|
[8] |
W. Chen, S.H. Yin, Y. Qi, X. Chen, and L.M. Wang, Effect of additives on bioleaching of copper sulfide ores, J. Cent. South. Univ., 50(2019), No. 7, p. 1507.
|
[9] |
J.L. Xia, J.J. Song, H.C. Liu, Z.Y. Nie, L. Shen, P. Yuan, C.Y. Ma, L. Zheng, and Y.D. Zhao, Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES, Hydrometallurgy, 180(2018), p. 26. doi: 10.1016/j.hydromet.2018.07.008
|
[10] |
W. Chen, S.H. Yin, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 59. doi: 10.1007/s12613-020-2125-x
|
[11] |
K.A. Nguyen, D. Borja, J. You, G. Hong, H. Jung, and H. Kim, Chalcopyrite bioleaching using adapted mesophilic microorganisms: Effects of temperature, pulp density, and initial ferrous concentrations, Mater. Trans., 59(2018), No. 11, p. 1860. doi: 10.2320/matertrans.M2018247
|
[12] |
C.M. Ai, P.P. Sun, A.X. Wu, X. Chen, and C. Liu, Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 274. doi: 10.1007/s12613-019-1735-7
|
[13] |
S.J. Ahmadi, M. Outokesh, M. Hosseinpour, and T. Mousavand, A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads, Particuology, 9(2011), No. 5, p. 480. doi: 10.1016/j.partic.2011.02.010
|
[14] |
S.H. Yin, W. Chen, J.M. Liu, and Q. Song, Agglomeration experiment of secondary copper sulfide ore, Chin. J. Eng., 41(2019), No. 9, p. 1127.
|
[15] |
D. Bevilaqua, H. Lahti, P.H. Suegama, O.G. Jr, A.V. Benedetti, J.A. Puhakka, and O.H. Tuovinen, Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors, Hydrometallurgy, 138(2013), p. 1. doi: 10.1016/j.hydromet.2013.06.008
|
[16] |
Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, and Y. Zhang, Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review, Chemosphere, 211(2018), p. 235. doi: 10.1016/j.chemosphere.2018.06.179
|
[17] |
S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, and N. Supanchaiyamat, Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal, J. Clean. Prod., 172(2018), p. 1128. doi: 10.1016/j.jclepro.2017.10.210
|
[18] |
Y.N. Guan, G.Y. Chen, Z.J. Cheng, B.B. Yan, and L.A. Hou, Air pollutant emissions from straw open burning: A case study in Tianjin, Atmos. Environ., 171(2017), p. 155. doi: 10.1016/j.atmosenv.2017.10.020
|
[19] |
H.Y. Bian, Y. Gao, J. Luo, L. Jiao, W.B. Wu, G.G. Fang, and H.Q. Dai, Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials, Waste Manage., 91(2019), p. 1. doi: 10.1016/j.wasman.2019.04.052
|
[20] |
H.S. Qi, Y. Zhao, X.Y. Zhao, T.X. Yang, Q.L. Dang, J.Q. Wu, P. Lv, H. Wang, and Z.M. Wei, Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration, Bioresour. Technol., 299(2020), art. No. 122596. doi: 10.1016/j.biortech.2019.122596
|
[21] |
E.S. Gaballah, A.E.F. Abomohra, C. Xu, M. Elsayed, T.K. Abdelkader, J.C. Lin, and Q.X. Yuan, Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure, Bioresour. Technol., 309(2020), art. No. 123311. doi: 10.1016/j.biortech.2020.123311
|
[22] |
S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, and A.Akcil, Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy, Hydrometallurgy, 153(2015), p. 98. doi: 10.1016/j.hydromet.2015.02.006
|
[23] |
W. Chen, S.H. Yin, A.X. Wu, L.M. Wang, and X. Chen, Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater, Bioresour. Technol., 297(2020), art. No. 122453. doi: 10.1016/j.biortech.2019.122453
|
[24] |
V. Dollhofer, T.M. Callaghan, G.W. Griffith, M. Lebuhn, and J. Bauer, Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants, Bioresour. Technol., 235(2017), p. 131. doi: 10.1016/j.biortech.2017.03.116
|
[25] |
F.P. Casciatori and J.C. Thoméo, Heat transfer in packed-beds of agricultural waste with low rates of air flow applicable to solid-state fermentation, Chem. Eng. Sci., 188(2018), p. 97. doi: 10.1016/j.ces.2018.05.024
|
[26] |
N. Hiroyoshi, H. Miki, T. Hirajima, and M. Tsunekawa, Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions, Hydrometallurgy, 60(2001), No. 3, p. 185. doi: 10.1016/S0304-386X(00)00155-9
|