Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu,  and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1464-1473. https://doi.org/10.1007/s12613-021-2393-0
Cite this article as:
Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu,  and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1464-1473. https://doi.org/10.1007/s12613-021-2393-0
Research Article

Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2

+ Author Affiliations
  • Corresponding authors:

    Liuting Zhang    E-mail: zhanglt89@just.edu.cn

    Shengnan Wang    E-mail: shengnan@caep.cn

  • Received: 14 October 2021Revised: 4 December 2021Accepted: 6 December 2021Available online: 9 December 2021
  • Novel graphene-supported FeOOH nanodots (FeOOH NDs@G) were successfully prepared by a facile hydrothermal method and doped into MgH2 through mechanical ball-milling. MgH2 with 10wt% FeOOH NDs@G began to release hydrogen at 229.8°C, which is 106.8°C lower than that of pure MgH2. The MgH2–10wt% FeOOH NDs@G composite could reversibly absorb 6.0wt% hydrogen at 200°C under a 3.2 MPa hydrogen pressure within 60 min. With the addition of FeOOH NDs@G, the dehydrogenation and hydrogenation activation energy of MgH2 was decreased to 125.03 and 58.20 kJ·mol−1 (156.05 and 82.80 kJ·mol−1 for pure MgH2), respectively. Furthermore, the hydrogen capacity of the FeOOH NDs@G composite retained 98.5% of the initial capacity after 20 cycles, showing good cyclic stability. The catalytic action of FeOOH NDs@G towards MgH2 could be attributed to the synergistic effect between graphene nanosheets and in-situ formed Fe, which prevented the aggregation of Mg/MgH2 particles and accelerated the hydrogen diffusion during cycling, thus enabling the MgH2–10wt% FeOOH NDs@G composite to exhibit excellent hydrogen storage performance.
  • loading
  • [1]
    L. Maugeri, Oil: never cry wolf—Why the petroleum age is far from over, Science, 304(2004), No. 5674, p. 1114. doi: 10.1126/science.1096427
    [2]
    C. Wan, L. Zhou, and S.M. Xu, et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid, Chem. Eng. J., 429(2022), art. No. 132388. doi: 10.1016/j.cej.2021.132388
    [3]
    Y.H. Zhang, W. Zhang, and X.P. Song, et al., Effects of spinning rate on structures and electrochemical hydrogen storage performances of RE–Mg–Ni–Mn-based AB2-type alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3219. doi: 10.1016/S1003-6326(16)64454-0
    [4]
    L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353. doi: 10.1038/35104634
    [5]
    Q.W. Lai, M. Paskevicius, and D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789. doi: 10.1002/cssc.201500231
    [6]
    S.K. Jeon, O.H. Kwon, H.S. Jang, K.S. Ryu, and S.H. Nahm, Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber, Appl. Surf. Sci., 432(2018), p. 176. doi: 10.1016/j.apsusc.2017.07.005
    [7]
    A. Hammad and I. Dincer, Analysis and assessment of an advanced hydrogen liquefaction system, Int. J. Hydrogen Energy, 43(2018), No. 2, p. 1139. doi: 10.1016/j.ijhydene.2017.10.158
    [8]
    Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
    [9]
    J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
    [10]
    Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, Int. J. Hydrogen Energy, 44(2019), No. 33, p. 18179. doi: 10.1016/j.ijhydene.2019.05.119
    [11]
    G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
    [12]
    Y. Wang and Y.J. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 41. doi: 10.1016/j.pnsc.2016.12.016
    [13]
    F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, art. No. 7334. doi: 10.1039/c2cc30740e
    [14]
    L.X. Hu and E.D. Wang, Hydrogen generation via hydrolysis of nanocrystalline MgH2 and MgH2-based composites, Trans. Nonferrous Met. Soc. China, 15(2005), No. 5, p. 965.
    [15]
    L.S. Xie, J.S. Li, T.B. Zhang, and H.C. Kou, Role of milling time and Ni content on dehydrogenation behavior of MgH2/Ni composite, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 569. doi: 10.1016/S1003-6326(17)60063-3
    [16]
    Y.H. Sun, T.Y. Ma, and K.F. Aguey-Zinsou, Magnesium supported on nickel nanobelts for hydrogen storage: Coupling nanosizing and catalysis, ACS Appl. Nano Mater., 1(2018), No. 3, p. 1272. doi: 10.1021/acsanm.8b00033
    [17]
    Q.Y. Zhang, Y.K. Huang, and L. Xu, et al., Highly dispersed MgH2 nanoparticle–graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828. doi: 10.1021/acsanm.9b00694
    [18]
    C.Q. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
    [19]
    Y.H. Zhang, D.L. Zhao, and B.W. Li, et al., Hydrogen storage behaviours of nanocrystalline and amorphous Mg20Ni10–xCox (x=0–4) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 405. doi: 10.1016/S1003-6326(09)60154-0
    [20]
    J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
    [21]
    Y.H. Zhang, T. Yang, and W.G. Bu, et al., Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg24Ni10Cu2)100−xNdx (x=0−20) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3668. doi: 10.1016/S1003-6326(13)62915-5
    [22]
    Y.H. Zhang, L.W. Li, and D.C. Feng, et al., Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551. doi: 10.1016/S1003-6326(17)60061-X
    [23]
    V. Knotek and D. Vojtěch, Electrochemical hydriding performance of Mg–TM–Mm (TM=transition metals, Mm=mischmetal) alloys for hydrogen storage, Trans. Nonferrous Met. Soc. China, 23(2013), No. 7, p. 2047. doi: 10.1016/S1003-6326(13)62695-3
    [24]
    X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
    [25]
    C.C. Xu, X.Z. Xiao, and J. Shao, et al., Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 791. doi: 10.1016/S1003-6326(16)64169-9
    [26]
    F.M. Nyahuma, L.T. Zhang, and M.C. Song, et al., Significantly improved hydrogen storage behaviors of MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 2021, DOI: 10.1007/s12613-021-2303-5
    [27]
    Z. Zhang, J.H. Zhang, and J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
    [28]
    F.A.H. Yap, N.N. Sulaiman, and M. Ismail, Understanding the dehydrogenation properties of MgH2 catalysed by Na3AlF6, Int. J. Hydrogen Energy, 44(2019), No. 58, p. 30583. doi: 10.1016/j.ijhydene.2018.02.073
    [29]
    Q.Y. Zhang, Y.K. Huang, and T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953. doi: 10.1016/j.jallcom.2020.153953
    [30]
    Y.H. Jia, S.M. Han, and W. Zhang, et al., Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2, Int. J. Hydrogen Energy, 38(2013), No. 5, p. 2352. doi: 10.1016/j.ijhydene.2012.12.018
    [31]
    G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
    [32]
    U. Ulmer, D. Oertel, and T. Diemant, et al., Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas, ACS Appl. Mater. Interfaces, 10(2018), No. 2, p. 1662. doi: 10.1021/acsami.7b13541
    [33]
    X. Zhang, Z.H. Ren, and Y.H. Lu, et al., Facile synthesis and superior catalytic activity of nano-TiN@N–C for hydrogen storage in NaAlH4, ACS Appl. Mater. Interfaces, 10(2018), No. 18, p. 15767. doi: 10.1021/acsami.8b04011
    [34]
    B. Yang, J.X. Zou, and T.P. Huang, et al., Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg–MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method, Chem. Eng. J., 371(2019), p. 233. doi: 10.1016/j.cej.2019.04.046
    [35]
    X. Zhang, Y.F. Liu, K. Wang, M.X. Gao, and H.G. Pan, Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation, Nano Res., 8(2015), No. 2, p. 533. doi: 10.1007/s12274-014-0667-9
    [36]
    X.Y. Ma, J.Q. Li, and C.H. An, et al., Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production, Nano Res., 9(2016), No. 8, p. 2284. doi: 10.1007/s12274-016-1115-9
    [37]
    S.R. Naqvi, T. Hussain, W. Luo, and R. Ahuja, Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials, Nano Res., 11(2018), No. 7, p. 3802. doi: 10.1007/s12274-017-1954-z
    [38]
    Z.Y. Lu, H.J. Yu, and X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
    [39]
    L. Xie, Y. Liu, and X.Z. Zhang, et al., Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1-2, p. 388. doi: 10.1016/j.jallcom.2009.04.028
    [40]
    W.C. Huang, J. Yuan, and J.G. Zhang, et al., Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions, Rare Met., 36(2017), No. 7, p. 574. doi: 10.1007/s12598-017-0913-x
    [41]
    Y. Wang, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645(2015), p. S509. doi: 10.1016/j.jallcom.2014.12.071
    [42]
    A. Bassetti, E. Bonetti, and L. Pasquini, et al., Hydrogen desorption from ball milled MgH2 catalyzed with Fe, Eur. Phys. J. B, 43(2005), No. 1, p. 19. doi: 10.1140/epjb/e2005-00023-9
    [43]
    L.T. Zhang, L. Ji, and Z.D. Yao, et al., Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrogen Energy, 44(2019), No. 39, p. 21955. doi: 10.1016/j.ijhydene.2019.06.065
    [44]
    G.L. Xia, Y.B. Tan, and X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981. doi: 10.1002/adma.201502005
    [45]
    L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146. doi: 10.1039/D0DT00230E
    [46]
    J.Q. Liu, M.B. Zheng, X.Q. Shi, H.B. Zeng, and H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors, Adv. Funct. Mater., 26(2016), No. 6, p. 919. doi: 10.1002/adfm.201504019
    [47]
    R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11-12, p. 2729. doi: 10.1007/BF01912817
    [48]
    E. Xu, H. Li, X.M. You, C. Bu, L.F. Zhang, Q. Wang, and Z.G. Zhao, Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057. doi: 10.1016/j.ijhydene.2016.12.102
    [49]
    G. Liu, Y.J. Wang, and C.C. Xu, et al., Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride, Nanoscale, 5(2013), No. 3, p. 1074. doi: 10.1039/C2NR33347C
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Share Article

    Article Metrics

    Article Views(1912) PDF Downloads(147) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return