Cite this article as: |
Yuya Ishiguro, Xinsheng Huang, Yuhki Tsukada, Toshiyuki Koyama, and Yasumasa Chino, Effect of bending and tension deformation on the texture evolution and stretch formability of Mg–Zn–RE–Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1334-1342. https://doi.org/10.1007/s12613-021-2398-8 |
Yuya Ishiguro E-mail: ishiguro.yuya@e.nagoya-u.jp
Bending and tension deformations were performed on Mg–1.3wt%Zn–0.2wt%RE–0.3wt%Zr (ZEK100) alloy sheets that initially had a transverse direction (TD)-split texture. The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated. The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm. However, the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations. The rolling direction-split texture developed on the surface with an increasing pass number of deformations. Conversely, the clear TD-split texture remained at the central part. As a result, a quadrupole texture was macroscopically developed with an increasing pass number of deformations. The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability. By contrast, the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations.
[1] |
I.J. Polmear, Magnesium alloys and applications, Mater. Sci. Technol., 10(1994), No. 1, p. 1. doi: 10.1179/mst.1994.10.1.1
|
[2] |
H. Yoshinaga and R. Horiuchi, Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis, Trans. JIM, 4(1963), No. 1, p. 1. doi: 10.2320/matertrans1960.4.1
|
[3] |
J.C. Mcdonald and P.W. Bakarian, Anisotropy and preferred orientation in rolled magnesium alloys, Trans. Metall. Soc. AIME, 233(1965), p. 95.
|
[4] |
R.V. Mises, Mechanik der plastischen formänderung von kristallen, Z. Angew. Math. Mech., 8(1928), No. 3, p. 161. doi: 10.1002/zamm.19280080302
|
[5] |
E. Yukutake, J. Kaneko, and M. Sugamata, Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates, Mater. Trans., 44(2003), No. 4, p. 452. doi: 10.2320/matertrans.44.452
|
[6] |
D.K. Guan, X.G. Liu, J.H. Gao, L. Ma, B.P. Wynne, and W.M. Rainforth, Exploring the mechanism of “Rare Earth” texture evolution in a lean Mg–Zn–Ca alloy, Sci. Rep., 9(2019), art. No. 7152. doi: 10.1038/s41598-019-43415-z
|
[7] |
R.K. Mishra, A.K. Gupta, P.R. Rao, A.K. Sachdev, A.M. Kumar, and A.A. Luo, Influence of cerium on the texture and ductility of magnesium extrusions, Scripta Mater., 59(2008), No. 5, p. 562. doi: 10.1016/j.scriptamat.2008.05.019
|
[8] |
K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Mater., 63(2010), No. 7, p. 725. doi: 10.1016/j.scriptamat.2009.12.033
|
[9] |
L.W.F. Mackenzie and M.O. Pekguleryuz, The recrystallization and texture of magnesium–zinc–cerium alloys, Scripta Mater., 59(2008), No. 6, p. 665. doi: 10.1016/j.scriptamat.2008.05.021
|
[10] |
Y. Chino, K. Sassa, and M. Mabuchi, Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y, Mater. Sci. Eng. A, 513-514(2009), p. 394. doi: 10.1016/j.msea.2009.01.074
|
[11] |
Y. Chino, X.S. Huang, K. Suzuki, and M. Mabuchi, Enhancement of stretch formability at room temperature by addition of Ca in Mg–Zn alloy, Mater. Trans., 51(2010), No. 4, p. 818. doi: 10.2320/matertrans.M2009385
|
[12] |
M.R. Zhou, X.S. Huang, Y. Morisada, H. Fujii, and Y. Chino, Effects of Ca and Sr additions on microstructure, mechanical properties, and ignition temperature of hot-rolled Mg–Zn alloy, Mater. Sci. Eng. A, 769(2020), art. No. 138474. doi: 10.1016/j.msea.2019.138474
|
[13] |
J.Y. Lee, Y.S. Yun, B.C. Suh, N.J. Kim, W.T. Kim, and D.H. Kim, Comparison of static recrystallization behavior in hot rolled Mg–3Al–1Zn and Mg–3Zn–0.5Ca sheets, J. Alloys Compd., 589(2014), p. 240. doi: 10.1016/j.jallcom.2013.11.210
|
[14] |
X.S. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Improvement of stretch formability of Mg–3Al–1Zn alloy sheet by high temperature rolling at finishing pass, J. Alloys Compd., 509(2011), No. 28, p. 7579. doi: 10.1016/j.jallcom.2011.04.132
|
[15] |
T. Nakata, C. Xu, H. Ohashi, Y. Yoshida, K. Yoshida, and S. Kamado, New Mg–Al based alloy sheet with good room-temperature stretch formability and tensile properties, Scripta Mater., 180(2020), p. 16. doi: 10.1016/j.scriptamat.2020.01.015
|
[16] |
H. Zhang, G.S. Huang, D.Q. Kong, G.F. Sang, and B. Song, Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures, J. Mater. Process. Technol., 211(2011), No. 10, p. 1575. doi: 10.1016/j.jmatprotec.2011.04.009
|
[17] |
M. Habibnejad-Korayem, M.K. Jain, and R.K. Mishra, Microstructure modification and bendability improvement of AZ31 magnesium sheet by bending-unbending and annealing process, Mater. Sci. Eng. A, 648(2015), p. 371. doi: 10.1016/j.msea.2015.09.047
|
[18] |
X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Improvement of formability of Mg–Al–Zn alloy sheet at low temperatures using differential speed rolling, J. Alloys Compd., 470(2009), No. 1-2, p. 263. doi: 10.1016/j.jallcom.2008.02.029
|
[19] |
T. Noguchi, K. Suzuki, X.S. Huang, N. Saito, Y. Tsukada, T. Koyama, and Y. Chino, Effects of bending and tension deformation on texture evolution and room temperature formability of AZ31B alloy sheets, J. Jpn. Inst. Met. Mater., 83(2019), No. 6, p. 212. doi: 10.2320/jinstmet.J2019002
|
[20] |
Y. Ishiguro, X.S. Huang, Y. Tsukada, T. Koyama, and Y. Chino, Effect of bending-tension deformation on texture evolution and room temperature formability of AZ31 alloy sheet rolled at high temperature, J. Jpn. Inst. Met. Mater., 85(2021), No. 4, p. 129. doi: 10.2320/jinstmet.JBW202001
|
[21] |
B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here? Scripta Mater., 84-85(2014), p. 1. doi: 10.1016/j.scriptamat.2014.04.017
|
[22] |
J.J. He, B. Jiang, Q. Yang, J. Xu, B. Liu, and F.S. Pan, Improved the anisotropy of extruded Mg–3Li–3Al–Zn alloy sheet by presetting grain re-orientation and subsequent annealing, J. Alloys Compd., 676(2016), p. 64. doi: 10.1016/j.jallcom.2016.03.121
|
[23] |
J.J. He, B. Jiang, J. Xu, J.Y. Zhang, X.W. Yu, B. Liu, and F.S. Pan, Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet, J. Alloys Compd., 723(2017), p. 213. doi: 10.1016/j.jallcom.2017.06.269
|
[24] |
J.J. He, Y. Mao, Y.J. Fu, B. Jiang, K. Xiong, S.M. Zhang, and F.S. Pan, Improving the room-temperature formability of Mg–3Al–1Zn alloy sheet by introducing an orthogonal four-peak texture, J. Alloys Compd., 797(2019), p. 443. doi: 10.1016/j.jallcom.2019.05.087
|
[25] |
Japan Standards Association, JIS B7729: Erichsen Test Machine, Japan Standards Association, Tokyo, 1995.
|
[26] |
Japan Standards Association, JIS Z2247: Methods for Erichsen Test, Japan Standards Association, Tokyo, 1998.
|
[27] |
Z.H. Li, T.T. Sasaki, M.Z. Bian, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, and K. Hono, Role of Zn on the room temperature formability and strength in Mg–Al–Ca–Mn sheet alloys, J. Alloys Compd., 847(2020), art. No. 156347. doi: 10.1016/j.jallcom.2020.156347
|
[28] |
P. Dobroň, J. Balík, F. Chmelík, K. Illková, J. Bohlen, D. Letzig, and P. Lukáč, A study of mechanical anisotropy of Mg–Zn–rare earth alloy sheet, J. Alloys Compd., 588(2014), p. 628. doi: 10.1016/j.jallcom.2013.11.142
|
[29] |
J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater., 55(2007), No. 6, p. 2101. doi: 10.1016/j.actamat.2006.11.013
|
[30] |
L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy, Mater. Sci. Eng. A, 445-446(2007), p. 302. doi: 10.1016/j.msea.2006.09.069
|
[31] |
B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A, 534(2012), p. 588. doi: 10.1016/j.msea.2011.12.013
|
[32] |
Y. Chino, H. Iwasaki, and M. Mabuchi, Stretch formability of AZ31 Mg alloy sheets at different testing temperatures, Mater. Sci. Eng. A, 466(2007), No. 1-2, p. 90. doi: 10.1016/j.msea.2007.02.027
|
[33] |
Y. Takayama, J.A. Szpunar, and H.T. Jeong, Cube texture development in an Al–Mg–Mn alloy sheet worked by continuous cyclic bending, Mater. Trans., 42(2001), No. 10, p. 2050. doi: 10.2320/matertrans.42.2050
|
[34] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater., 51(2003), No. 7, p. 2055. doi: 10.1016/S1359-6454(03)00005-3
|
[35] |
Y. Chino, K. Kimura, and M. Mabuchi, Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 481. doi: 10.1016/j.msea.2007.09.058
|
[36] |
J. Koike, N. Fujiyama, D. Ando, and Y. Sutou, Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys, Scripta Mater., 63(2010), No. 7, p. 747. doi: 10.1016/j.scriptamat.2010.03.021
|