Hiroyuki Matsuura, Xiao Yang, Guangqiang Li, Zhangfu Yuan,  and Fumitaka Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 739-749. https://doi.org/10.1007/s12613-021-2400-5
Cite this article as:
Hiroyuki Matsuura, Xiao Yang, Guangqiang Li, Zhangfu Yuan,  and Fumitaka Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 739-749. https://doi.org/10.1007/s12613-021-2400-5
Invited Review

Recycling of ironmaking and steelmaking slags in Japan and China

+ Author Affiliations
  • Corresponding authors:

    Xiao Yang    E-mail: yangxiao@westlake.edu.cn

    Fumitaka Tsukihashi    E-mail: tsukihashif@nifty.com

  • Received: 20 September 2021Revised: 13 December 2021Accepted: 22 December 2021Available online: 25 December 2021
  • The mass production of steel is inevitably accompanied by large quantities of slags. The treatment of ironmaking and steelmaking slags is a great challenge in the sustainable development of the steel industry. Japan and China are two major steel producing countries that have placed a large emphasis on developing new technologies to decrease slag emission or promote slag valorization. Slags are almost completely reused or recycled in Japan. However, due to stagnant infrastructural investments, future applications of slags in conventional sectors are expected to be difficult. Exploring new functions or applications of slags has become a research priority in Japan. For example, the utilization of steelmaking slags in offshore seabeds to create marine forests is under development. China is the top steel producer in the world. The utilization ratios of ironmaking and steelmaking slags have risen steadily in recent years, driven largely by technological advances. For example, hot stage processing of slags for materials as well as heat recovery techniques has been widely applied in steel plants with good results. However, increasing the utilization ratio of basic oxygen furnace slags remains a major challenge. Technological innovations in slag recycling are crucial for the steel industries in Japan and China. Here, the current status and developing trends of utilization technologies of slags in both countries are reviewed.
  • loading
  • [1]
    World Steel Association, World Steel in Figures 2021, World Steel Association, 2021, p. 7.
    [2]
    Nippon Slag Association, Annual Statistical Report of Iron and Steel Slag FY2020, Nippon Slag Association, 2021, p. 2.
    [3]
    S. Tonomura, Outline of Course 50, Energy Procedia, 37(2013), p. 7160. doi: 10.1016/j.egypro.2013.06.653
    [4]
    H. Tobo, Y. Ta, M. Kuwayama, Y. Hagio, K. Yabuta, H. Tozawa, T. Tanaka, K. Morita, H. Matsuura, and F. Tsukihashi, Development of continuous steelmaking slag solidification process suitable for sensible heat recovery, ISIJ Int., 55(2015), No. 4, p. 894. doi: 10.2355/isijinternational.55.894
    [5]
    T. Hamano, S. Fukagai, and F. Tsukihashi, Reaction mechanism between solid CaO and FeOx–CaO–SiO2–P2O5 slag at 1573 K, ISIJ Int., 46(2006), No. 4, p. 490. doi: 10.2355/isijinternational.46.490
    [6]
    S. Fukagai, T. Hamano, and F. Tsukihashi, Formation reaction of phosphate compound in multi phase flux at 1573 K, ISIJ Int., 47(2007), No. 1, p. 187. doi: 10.2355/isijinternational.47.187
    [7]
    R. Saito, H. Matsuura, K. Nakase, X. Yang, and F. Tsukihashi, Microscopic formation mechanisms of P2O5-containing phase at the interface between solid CaO and molten slag, Tetsu-to-Hagane, 95(2009), No. 3, p. 258. doi: 10.2355/tetsutohagane.95.258
    [8]
    X. Yang, H. Matsuura, and F. Tsukihashi, Formation behavior of phosphorous compounds at the interface between solid 2CaO·SiO2 and FeOx–CaO–SiO2–P2O5 slag at 1673K, Tetsu-to-Hagane, 95(2009), No. 3, p. 268. doi: 10.2355/tetsutohagane.95.268
    [9]
    X. Yang, H. Matsuura, and F. Tsukihashi, Condensation of P2O5 at the interface between 2CaO·SiO2 and CaO–SiO2–FeOx–P2O5 slag, ISIJ Int., 49(2009), No. 9, p. 1298. doi: 10.2355/isijinternational.49.1298
    [10]
    X. Yang, H. Matsuura, and F. Tsukihashi, Reaction behavior of P2O5 at the interface between solid 2CaO·SiO2 and liquid CaO–SiO2–FeOx–P2O5 slags saturated with solid 5CaO·SiO2·P2O5 at 1573 K, ISIJ Int., 50(2010), No. 5, p. 702. doi: 10.2355/isijinternational.50.702
    [11]
    X. Yang, H. Matsuura, and F. Tsukihashi, Dissolution behavior of solid 5CaO·SiO2·P2O5 in CaO–SiO2–FeOx slag, Mater. Trans., 51(2010), No. 6, p. 1094. doi: 10.2320/matertrans.M-M2010810
    [12]
    X. Gao, H. Matsuura, I. Sohn, W.L. Wang, D.J. Min, and F. Tsukihashi, Phase relationship of CaO–SiO2–FeO–5 mass pct P2O5 system with low oxygen partial pressure at 1673 K (1400°C), Metall. Mater. Trans. B, 43(2012), No. 4, p. 694. doi: 10.1007/s11663-012-9651-5
    [13]
    X. Gao, H. Matsuura, I. Sohn, W.L. Wang, D.J. Min, and F. Tsukihashi, Phase relationship for the CaO–SiO2–FeO–5 mass%P2O5 system with oxygen partial pressure of 10–8 atm at 1673 and 1623 K, Mater. Trans., 54(2013), No. 4, p. 544. doi: 10.2320/matertrans.M-M2013801
    [14]
    X. Gao, H. Matsuura, M. Miyata, and F. Tsukihashi, Phase equilibrium for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 system for dephosphorization of hot metal pretreatment, ISIJ Int., 53(2013), No. 8, p. 1381. doi: 10.2355/isijinternational.53.1381
    [15]
    M. Zhong, H. Matsuura, and F. Tsukihashi, Activity of P2O5 in solid solution between di-calcium silicate and tri-calcium phosphate at 1823 and 1873 K, ISIJ Int., 55(2015), No. 11, p. 2283. doi: 10.2355/isijinternational.ISIJINT-2015-019
    [16]
    M. Zhong, H. Matsuura, and F. Tsukihashi, Activity of phosphorus pent-oxide and tri-calcium phosphate in 2CaO·SiO2−3CaO·P2O5 solid solution saturated with CaO, Mater. Trans., 56(2015), No. 8, p. 1192. doi: 10.2320/matertrans.M-M2015813
    [17]
    M. Zhong, H. Matsuura, and F. Tsukihashi, Thermodynamic properties of phosphorus oxide in the 2CaO·SiO2−3CaO·P2O5 solid solution saturated with MgO, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1745. doi: 10.1007/s11663-016-0639-4
    [18]
    H. Matsuura, T. Hamano, M. Zhong, X. Gao, X. Yang, and F. Tsukihashi, Energy and resource saving of steelmaking process: Utilization of innovative multi-phase flux during dephosphorization process, JOM, 66(2014), No. 9, p. 1572. doi: 10.1007/s11837-014-1108-7
    [19]
    X.R. Zhang, H. Matsuura, and F. Tsukihashi, Dissolution mechanism of various elements into seawater for recycling of steelmaking slag, ISIJ Int., 52(2012), No. 5, p. 928. doi: 10.2355/isijinternational.52.928
    [20]
    H. Matsuura, X.R. Zhang, L.K. Zang, G.H. Zhang, and F. Tsukihashi, Dissolution mechanisms of steelmaking slags in sea water, Miner. Process. Extr. Metall., 126(2017), No. 1-2, p. 11. doi: 10.1080/03719553.2016.1263784
    [21]
    X.R. Zhang, H. Atsumi, H. Matsuura, and F. Tsukihashi, Influence of gluconic acid on dissolution of Si, P and Fe from steelmaking slag with different composition into seawater, ISIJ Int., 54(2014), No. 6, p. 1443. doi: 10.2355/isijinternational.54.1443
    [22]
    X.R. Zhang, H. Matsuura, and F. Tsukihashi, Enhancement of the dissolution of nutrient elements from steelmaking slag into seawater by gluconic acid, J. Sustainable Metall., 1(2015), No. 2, p. 134. doi: 10.1007/s40831-015-0013-9
    [23]
    T. Kawasaki and H. Matsuura, Influence of organic acid complex formation on the elution behavior of steelmaking slag amorphous phase into freshwater, Tetsu-to-Hagane, 107(2021), No. 1, p. 92. doi: 10.2355/tetsutohagane.TETSU-2020-067
    [24]
    X.R. Zhang, H. Matsuura, and F. Tsukihashi, Dissolution mechanisms of steelmaking slag–dredged soil mixture into seawater, J. Sustainable Metall., 2(2016), No. 2, p. 123. doi: 10.1007/s40831-015-0040-6
    [25]
    X. Yang, Y. Sakurai, Y. Hisaka, and F. Tsukihashi, Recycling of steelmaking slag in seawater as an iron supplier: Effects of slag composition, carbonation and usage of gluconic acid, Mater. Trans., 62(2021), No. 8, p. 1253. doi: 10.2320/matertrans.MT-M2020346
    [26]
    Y. Sakurai, X. Yang, Y. Hisaka, and F. Tsukihashi, Nutrient supply to seawater from steelmaking slag: The coupled effect of gluconic acid usage and slag carbonation, Metall. Mater. Trans. B, 51(2020), No. 3, p. 1039. doi: 10.1007/s11663-020-01805-z
    [27]
    Y.S. Lang, H. Matsuura, and F. Tsukihashi, Long-term dissolution behavior of steelmaking slag and its composite materials in seawater, J. Sustainable Metall., 3(2017), No. 4, p. 729. doi: 10.1007/s40831-017-0137-1
    [28]
    A. Hayashi, H. Tozawa, K. Shimada, K. Takahashi, R. Kaneko, F. Tsukihashi, R. Inoue, and T. Ariyama, Effects of the seaweed bed construction using the mixture of steelmaking slag and dredged soil on the growth of seaweeds, ISIJ Int., 51(2011), No. 11, p. 1919. doi: 10.2355/isijinternational.51.1919
    [29]
    Committee of Metallurgical Slags Development and Utilization, Application association of iron and steel scrap of China, Iron and Steel Scrap of China, 2017, No. 1, p. 47.
    [30]
    G.L. Zhu, J.L. Yang, Y.D. Hao, and S.B. Sun, Current status of ironmaking and steelmaking slag valorization of China in the 11th five years plan and the prospecting for the 12th five years plan, China Steel, 7(2011), p. 12.
    [31]
    L.F. Yang, Comprehensive Utilization Technology and Industrial Development of Iron and Steelmaking Slags, 2020 [2022-02-21]. https://huanbao.bjx.com.cn/news/20200108/1034826.shtml
    [32]
    H.F. Wang, C.X. Zhang, Y.H. Qi, X.T. Dai, and D.L. Yan, Present situation and development trend of blast furnace slag treatment, Iron Steel, 42(2007), No. 6, p. 83. doi: 10.13228/j.boyuan.issn0449-749x.2007.06.019
    [33]
    Q.F. Zhang, Q.W. Mao, G.Y. Liu, K. Wang, and J. Chen, Features and application of technologies used in Shougang Jingtang No. 3 BF, Steelmaking, 40(2021), No. 2, p. 26.
    [34]
    J.H. Dong, W. Wang, and C.K. Gao, Research on new seawater desalination technology using waste heat recycled from washing slag water, China Metall., 22(2012), No. 10, p. 51. doi: 10.13228/j.boyuan.issn1006-9356.2012.10.001
    [35]
    G.Q. Li, M.X. Guo, Z. Zhang, and H.W. Ni, Current development and fundamental researches of ironmaking and steelmaking slag valorisation in China, [in] 2014 Japan Iron and Steel Association Spring Conference, Tokyo, 2014, p. 135.
    [36]
    S. Jahanshahi, D.S. Xie, Y.H. Pan, P. Ridgeway, and J. Mathieson, Dry slag granulation with integrated heat recover, [in] 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry (EECR Steel 2011), Düsseldorf, 2011, p. 1.
    [37]
    W.J. Duan, X.J. Lv, and Z. Li, A review of research progress of centrifugal granulation of blast furnace slag, J. Mater. Metall., 19(2020), No. 2, p. 79. doi: 10.14186/j.cnki.1671-6620.2020.02.001
    [38]
    J. Chen, Dry granulation and waste heat recovery technology for metallurgical molten slags, [in] Proceedings of 2016 China Technology on Metallurgical Energy and Environmental Protection, Beijing, 2016, p. 54.
    [39]
    G. Li, Slag valorisation in China: An overview, [in] Proceedings of the First International Slag Valorisation Symposium, Leuven, 2009, p. 165.
    [40]
    J.H. Guan, The development of technology and its characteristic for BSSF processing, Metall. Collect., 1(2005), p. 31. doi: 10.19537/j.cnki.2096-2789.2005.01.011
    [41]
    J. Cui,Y.L. Xiao,Y. Liu,H. Chen, and Y.Q. Li, Baosteel’s slag short flow process for molten steelmaking slag treatment and its application, Baosteel Tech. Res., 2(2008), No. 3, p. 54.
    [42]
    X.B. Wang, M.B. Zhang, and S. Li, Research and application of BSSF stainless steelmaking slag treatment technology, Baosteel Technol., 2020, No. 1, p. 73.
    [43]
    Y. Sun, J. Chen, and Z. Zhang, Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O, Energy, 167(2019), p. 688. doi: 10.1016/j.energy.2018.11.019
    [44]
    Y. Sun, S. Sridhar, L. Liu, X. Wang, and Z. Zhang, Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction, Sci. Rep., 5(2015), p. 16591. doi: 10.1038/srep16591
    [45]
    W. Chen, M. Wang, L. Liu, H. Wang, D. Min, and X. Wang, Three-stage method energy–mass coupling high-efficiency utilization process of high-temperature molten steel slag, Metall. Mater. Trans. B, 52(2021), p. 3004. doi: 10.1007/s11663-021-02213-7
    [46]
    M. Zou, Y. Shen, and J. Liu, Review on application of steel slag powder in cement-based materials, Bull. Chin. Ceram. Soc., 40(2021), p. 2964. doi: 10.16552/j.cnki.issn1001-1625.20210616.001
    [47]
    E. Tian, Z. Zhuang, H. Kang, and Y. Lian, Research on mechanical properties of steel slag powder road concrete, Concrete, 383(2021), p. 145. doi: 10.3969/j.issn.1002-3550.2021.09.030
    [48]
    F. He, Y. Fang, J.L. Xie and J. Xie, Fabrication and characterization of glass–ceramics materials developed from steel slag waste, Mater. Des., 42(2012), p. 198. doi: 10.1016/j.matdes.2012.05.033
    [49]
    Y. Li, W. Tang, H. Sheng, Y. Yang, and A. Mclean, Generation of pyroxene-based porous ceramics from steel refining slag, ISIJ Int., 61(2021), p. 2041. doi: 10.2355/isijinternational.ISIJINT-2021-043
    [50]
    C. Du, Y. Yu, L. Jiang, and J. Yu, Efficient extraction of phosphate from dephosphorization slag by hydrochloric acid leaching, J. Clean. Prod., 332(2022), art. No. 130087. doi: 10.1016/j.jclepro.2021.130087
    [51]
    X. Yang and T. Nohira, A new concept for producing white phosphorus: Electrolysis of dissolved phosphate in molten chloride, ACS Sustainable Chem. Eng., 8(2020), p. 13784. doi: 10.1021/acssuschemeng.0c04796
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(3726) PDF Downloads(257) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return