Cite this article as: |
Yang You, Jiabao Guo, Gang Li, Zhuang Zheng, Yong Li, and Xuewei Lü, Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2152-2161. https://doi.org/10.1007/s12613-021-2407-y |
Yang You E-mail: youyang@cqu.edu.cn
Xuewei Lü E-mail: lvxuewei@cqu.edu.cn
[1] |
C. Wang, C.Y. Xu, Z.J. Liu, Y.Z. Wang, R.R. Wang, and L.M. Ma, Effect of organic binders on the activation and properties of indurated magnetite pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1145. doi: 10.1007/s12613-020-2055-7
|
[2] |
C.C. Yang, D.Q. Zhu, J. Pan, and Y. Shi, Some basic properties of granules from ore blends consisting of ultrafine magnetite and hematite ores, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 953. doi: 10.1007/s12613-019-1824-7
|
[3] |
D.Q. Zhu, B.J. Shi, J. Pan, and F. Zhang, Effect of pre-briquetting on the granulation of sinter mixture containing high proportion of specularite concentrate, Powder Technol., 331(2018), p. 250. doi: 10.1016/j.powtec.2018.03.015
|
[4] |
M. Gan, X.H. Fan, Z.Y. Ji, et al., Optimising method for improving granulation effectiveness of iron ore sintering mixture, Ironmaking Steelmaking, 42(2015), No. 5, p. 351. doi: 10.1179/1743281214Y.0000000237
|
[5] |
D.H. Liu, H. Liu, J.L. Zhang, et al., Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
|
[6] |
L.H. Hsieh, Effect of iron ore concentrate on sintering properties, ISIJ Int., 57(2017), No. 11, p. 1937. doi: 10.2355/isijinternational.ISIJINT-2017-276
|
[7] |
J. Pan, B.J. Shi, D.Q. Zhu, and Y.P. Mo, Improving sintering performance of specularite concentrates by pre-briquetting process, ISIJ Int., 56(2016), No. 5, p. 777. doi: 10.2355/isijinternational.ISIJINT-2015-578
|
[8] |
F.M. Mahdi, M. Mehrabi, A. Hassanpour, and F.L. Muller, On the formation of core-shell granules in batch high shear granulators at two scales, Powder Technol., 356(2019), p. 253. doi: 10.1016/j.powtec.2019.08.019
|
[9] |
S.A.L. de Koster, L.X. Liu, J.D. Litster, and R.M. Smith, High-shear granulation: An investigation into granule breakage rates, Adv. Powder Technol., 32(2021), No. 5, p. 1390. doi: 10.1016/j.apt.2021.03.006
|
[10] |
K.F. Lee, M. Dosta, A.D. McGuire, et al., Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method, Comput. Chem. Eng., 99(2017), p. 171. doi: 10.1016/j.compchemeng.2017.01.022
|
[11] |
A. Kumar, K.V. Gernaey, T.D. Beer, and I. Nopens, Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review, Eur. J. Pharm. Biopharm., 85(2013), No. 3, p. 814. doi: 10.1016/j.ejpb.2013.09.013
|
[12] |
R. Maharjan and S.H. Jeong, High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation, Powder Technol., 366(2020), p. 667. doi: 10.1016/j.powtec.2020.03.020
|
[13] |
E.L. Chan, K. Washino, H. Ahmadian, et al., Dem investigation of horizontal high shear mixer flow behaviour and implications for scale-up, Powder Technol., 270(2015), p. 561. doi: 10.1016/j.powtec.2014.09.017
|
[14] |
O. Macho, J. Kabát, Ľ. Gabrišová, et al., Dimensionless criteria as a tool for creation of a model for predicting the size of granules in high-shear granulation, Part. Sci. Technol., 38(2020), No. 3, p. 381. doi: 10.1080/02726351.2018.1548531
|
[15] |
Z.Y. Ji, Y.X. Zhang, M. Gan, X.H. Fan, X.L. Chen, and X.X. Huang, Importance of intensive mixing on sintering with fine-grained iron ore materials: Characterization and function mechanism, J. Mater. Res. Technol., 9(2020), No. 6, p. 14443. doi: 10.1016/j.jmrt.2020.10.044
|
[16] |
S.G. Gong, Z.J. Zuo, G.L. Xie, H.S. Lu, and J.P. Zhang, Numerical simulation of wet particle flows in an intensive mixer, Powder Technol., 346(2019), p. 301. doi: 10.1016/j.powtec.2019.02.004
|
[17] |
Z.G. Que, S.L. Wu, X.B. Zhai, and K.L. Li, Effect of characteristics of coarse iron ores on the granulation behaviour of concentrates in the sintering process, Ironmaking Steelmaking, 46(2019), No. 3, p. 246. doi: 10.1080/03019233.2017.1368954
|
[18] |
A.M. Nyembwe, R.D. Cromarty, and A.M. Garbers-Craig, Prediction of the granule size distribution of iron ore sinter feeds that contain concentrate and micropellets, Powder Technol., 295(2016), p. 7. doi: 10.1016/j.powtec.2016.03.010
|
[19] |
X.W. Lv, Q.G. Yuan, C.G. Bai, X.B. Huang, and L. Lei, A phenomenological description of moisture capacity of iron ores, Particuology, 10(2012), No. 6, p. 692. doi: 10.1016/j.partic.2011.08.008
|
[20] |
S.L. Wu and G.L. Zhang, Liquid absorbability of iron ores and large limonite particle divided adding technology in the sintering process, Steel Res. Int., 86(2015), No. 9, p. 1014. doi: 10.1002/srin.201400300
|
[21] |
C.C. Yang, D.Q. Zhu, J. Pan, and L.M. Lu, Granulation effectiveness of iron ore sinter feeds: Effect of ore properties, ISIJ Int., 58(2018), No. 8, p. 1427. doi: 10.2355/isijinternational.ISIJINT-2018-141
|
[22] |
X.W. Lv, C.G. Bai, C.Q. Zhou, H. Xie, and R.M. Shi, New method to determine optimum water content for iron ore granulation, Ironmaking Steelmaking, 37(2010), No. 6, p. 407. doi: 10.1179/030192310X12690127076271
|
[23] |
X.W. Lv, C.G. Bai, G.B. Qiu, S.F. Zhang, and M.L. Hu, Moisture capacity: Definition, measurement, and application in determining the optimal water content in granulating, ISIJ Int., 50(2010), No. 5, p. 695. doi: 10.2355/isijinternational.50.695
|
[24] |
C.Y. Lin, H.C. Wang, W.Y. Hsu, A.N. Huang, and H.P. Kuo, Stage-wise characterization of the high shear granulation process by impeller torque changing rate, Adv. Powder Technol., 30(2019), No. 8, p. 1513. doi: 10.1016/j.apt.2019.04.029
|
[25] |
Y. You, J.B. Guo, X.W. Lv, et al., Numerical simulation of particle mixing behavior in high speed shear mixer and cylinder mixer, ISIJ Int., 61(2021), No. 7, p. 2059. doi: 10.2355/isijinternational.ISIJINT-2020-768
|
[26] |
Y. You, J.B. Guo, G. Li, et al., Investigation the iron ore fine granulation effects and particle adhesion behavior in a horizontal high-shear granulator, Powder Technol., 394(2021), p. 162. doi: 10.1016/j.powtec.2021.08.047
|
[27] |
Z.P. Lv, W.S. Ma, M. Wang, et al., Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2102576. doi: 10.1002/adfm.202102576
|
[28] |
S.L. Wu, Z.G. Que, and K.L. Li, Strengthening granulation behavior of specularite concentrates based on matching of characteristics of iron ores in sintering process, J. Iron Steel Res. Int., 25(2018), No. 10, p. 1017. doi: 10.1007/s42243-018-0153-9
|
[29] |
E.W. Voice, S.H. Brooks, and P.K. Gledhill, The permeability of sinter beds, J. Iron Steel Inst., 174(1953), No. 2, p. 136.
|
[30] |
S.M. Iveson, P.A.L. Wauters, S. Forrest, J.D. Litster, G.M.H. Meesters, and B. Scarlett, Growth regime map for liquid-bound granules: Further development and experimental validation, Powder Technol., 117(2001), No. 1-2, p. 83. doi: 10.1016/S0032-5910(01)00317-5
|
[31] |
Y.C. Chen, Y.Z. Zhao, H.L. Gao, and J.Y. Zheng, Liquid bridge force between two unequal-sized spheres or a sphere and a plane, Particuology, 9(2011), No. 4, p. 374. doi: 10.1016/j.partic.2010.11.006
|
[32] |
S.A.L. de Koster, K. Pitt, J.D. Litster, and R.M. Smith, High-shear granulation: An investigation into the granule consolidation and layering mechanism, Powder Technol., 355(2019), p. 514. doi: 10.1016/j.powtec.2019.07.076
|