Zicheng Xin, Jiangshan Zhang, Yu Jin, Jin Zheng, and Qing Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 335-344. https://doi.org/10.1007/s12613-021-2409-9
Cite this article as:
Zicheng Xin, Jiangshan Zhang, Yu Jin, Jin Zheng, and Qing Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 335-344. https://doi.org/10.1007/s12613-021-2409-9
Research Article

Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network

+ Author Affiliations
  • Corresponding authors:

    Jiangshan Zhang    E-mail: zjsustb@163.com

    Qing Liu    E-mail: qliu@ustb.edu.cn

  • Received: 27 September 2021Revised: 8 December 2021Accepted: 30 December 2021Available online: 31 December 2021
  • The composition control of molten steel is one of the main functions in the ladle furnace (LF) refining process. In this study, a feasible model was established to predict the alloying element yield using principal component analysis (PCA) and deep neural network (DNN). The PCA was used to eliminate collinearity and reduce the dimension of the input variables, and then the data processed by PCA were used to establish the DNN model. The prediction hit ratios for the Si element yield in the error ranges of ±1%, ±3%, and ±5% are 54.0%, 93.8%, and 98.8%, respectively, whereas those of the Mn element yield in the error ranges of ±1%, ±2%, and ±3% are 77.0%, 96.3%, and 99.5%, respectively, in the PCA–DNN model. The results demonstrate that the PCA–DNN model performs better than the known models, such as the reference heat method, multiple linear regression, modified backpropagation, and DNN model. Meanwhile, the accurate prediction of the alloying element yield can greatly contribute to realizing a “narrow window” control of composition in molten steel. The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.
  • loading
  • [1]
    J. Liu, Artificial intelligence drives changes in metallurgical industry, Iron Steel, 55(2020), No. 6, p. 1. doi: 10.13228/j.boyuan.issn0449-749x.20200191
    [2]
    J. Li, LF Refining Technology, Metallurgical Industry Press, Beijing, 2012.
    [3]
    P. Yu, D. P. Zhan, Z. H. Jiang, D. L. Li, X. D. Yin, and Z. G. Ma, Development of a terminal composition prediction model for steel refining with ladle furnace, J. Mater. Metall., 5(2006), No. 1, p. 20.
    [4]
    G.B. Li, C.L. Zhao, S.H. Zhao, L.J. Wang, and W.W. Zhang, Development of LF refining composition prediction model, Angang Technol., 2009(4), p. 26.
    [5]
    N.K. Nath, K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh, Ladle furnace on-line reckoner for prediction and control of steel temperature and composition, Ironmaking Steelmaking, 33(2006), No. 2, p. 140. doi: 10.1179/174328106X80082
    [6]
    W.S. Cheng, S.G. Tang, Q.Z. Liu, and M.R. Fei, R&D of the ladle furnace mathematic model, [in] Proceedings of International Conference on Machine Learning and Cybernetics, Beijing, p. 566.
    [7]
    M. Seike, R. Sakao, H. Dei, H. Yamaguchi, T. Muroi, and S. Tsuda, Development of LFV guide control system using the expert system, CAMP-ISIJ, 7(1994), No. 5, p. 1260.
    [8]
    X.W. Gao, A.A. Zhang, and Q.L. Wei, Neural network based prediction of endpoint in ladle refining process, J. Northeast. Univ. Nat. Sci., 26(2005), No. 8, p. 726.
    [9]
    Z. Xu and Z.Z. Mao, Analysis and prediction of influencing factor on element recovery in ladle furnace, Iron Steel, 47(2012), No. 3, p. 34.
    [10]
    G.B. Huang, Z. Bai, L.L.C. Kasun, and C.M. Vong, Local receptive fields based extreme learning machine, IEEE Comput. Intell. Mag., 10(2015), No. 2, p. 18. doi: 10.1109/MCI.2015.2405316
    [11]
    V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, 1995.
    [12]
    V. N. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.
    [13]
    L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
    [14]
    S.H. Kwon, D.G. Hong, and C.H. Yim, Prediction of hot ductility of steels from elemental composition and thermal history by deep neural networks, Ironmaking Steelmaking, 47(2020), No. 10, p. 1176. doi: 10.1080/03019233.2019.1699358
    [15]
    J.P. Yang, J.S. Zhang, W.D. Guo, S. Gao, and Q. Liu, End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation, ISIJ Int., 61(2021), No. 7, p. 2100. doi: 10.2355/isijinternational.ISIJINT-2020-540
    [16]
    I. Mohanty, R. Banerjee, A. Santara, S. Kundu, and P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, Ironmaking Steelmaking, 48(2021), No. 8, p. 953. doi: 10.1080/03019233.2020.1848303
    [17]
    S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-Notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
    [18]
    Z.C. Xin, J.S. Zhang, J.G. Zhang, Y. Jin, J. Zheng, and Q. Liu, Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization, Ironmaking Steelmaking, 48(2021), No. 9, p. 1123. doi: 10.1080/03019233.2021.1935143
    [19]
    K. Pearson, Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia, Philos. Trans. R. Soc. London, Ser. A, 187, p. 253.
    [20]
    Z. Zhang, L.L. Cao, W.H. Lin, J.K. Sun, X.M. Feng, and Q. Liu, Improved prediction model for BOF end-point manganese content based on IPSO-RELM method, Chin. J. Eng., 41(2019), No. 8, p. 1052. doi: 10.13374/j.issn2095-9389.2019.08.011
    [21]
    K.X. Zhou, W.H. Lin, J.K. Sun, X.M. Feng, W. Fang, and Q. Liu, A prediction model to calculate Mn yield during BOF alloying process using improved extreme learning machine, J. Cent. South Univ. (Sci. Technol.), 52(2021), No. 5, p. 1399. doi: 10.11817/j.issn.1672-7207.2021.05.001
    [22]
    S. Valle, W.H. Li, and S.J. Qin, Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods, Ind. Eng. Chem. Res., 38(1999), No. 11, p. 4389. doi: 10.1021/ie990110i
    [23]
    K. Wu, X.Z. Liu, X.X. Zhang, and Y. Miao, Feature extraction of hot strip rolling data based on PCA-DBN, Metall. Ind. Autom., 44(2020), No. 3, p. 21.
    [24]
    Y.L. Huang, Y.F. Liu, H. Huang, and B.L. Zheng, Prediction model of TPC reception iron amount based on PCA-GA-BP, Control Eng. China, 16(2009), No. 4, p. 446.
    [25]
    C. Chen, N. Wang, and M. Chen, Prediction model of end-point phosphorus content in consteel electric furnace based on PCA-extra tree model, ISIJ Int., 61(2021), No. 6, p. 1908. doi: 10.2355/isijinternational.ISIJINT-2020-615
    [26]
    Subagyo and G.A. Brooks, Online monitoring of dynamic slag behavior in ladle metallurgy, ISIJ Int., 43(2003), No. 8, p. 1286. doi: 10.2355/isijinternational.43.1286
    [27]
    G.E. Hinton and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313(2006), No. 5786, p. 504. doi: 10.1126/science.1127647
    [28]
    Z. H. Zhou, Machine Learning, Tsinghua University Press, Beijing, 2016.
    [29]
    Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521(2015), No. 7553, p. 436. doi: 10.1038/nature14539
    [30]
    G.W. Song, B.A. Tama, J. Park, J.Y. Hwang, J. Bang, S.J. Park, and S. Lee, Temperature control optimization in a steel-making continuous casting process using a multimodal deep learning approach, Steel Res. Int., 90(2019), No. 12, art. No. 1900321. doi: 10.1002/srin.201900321
    [31]
    C.A. Myers and T. Nakagaki, Prediction of nucleation lag time from elemental composition and temperature for iron and steelmaking slags using deep neural networks, ISIJ Int., 59(2019), No. 4, p. 687. doi: 10.2355/isijinternational.ISIJINT-2018-338
    [32]
    S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300. doi: 10.1016/j.matdes.2018.11.060
    [33]
    M. Ranzato, F.J. Huang, Y.L. Boureau, and Y. LeCun, Unsupervised learning of invariant feature hierarchies with applications to object recognition, [in] 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, p. 1.
    [34]
    S.H. Wang, P. Phillips, Y.X. Sui, B. Liu, M. Yang, and H. Cheng, Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling, J. Med. Syst., 42(2018), No. 85, art. No. 85(2018)
    [35]
    N. Qian, On the momentum term in gradient descent learning algorithms, Neural Netw., 12(1999), No. 1, p. 145. doi: 10.1016/S0893-6080(98)00116-6
    [36]
    I. Loshchilov and F. Hutter, Decoupled weight decay regularization, [in] 7th International Conference on Learning Representations (ICLR), New Orleans, 2019, p. 1.
    [37]
    M.H. Zhao, S.S. Zhong, X.Y. Fu, B.P. Tang, and M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Trans. Ind. Inf., 16(2020), No. 7, p. 4681. doi: 10.1109/TII.2019.2943898
    [38]
    S. Samarasinghe, Neural Networks for Applied Sciences and Engineering, Auerbach Publications, New York, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(901) PDF Downloads(88) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return