Cite this article as: |
Dajun Zhai, Tao Qiu, Jun Shen, and Keqin Feng, Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1991-1999. https://doi.org/10.1007/s12613-022-2413-8 |
Jun Shen E-mail: shenjun@cqu.edu.cn
[1] |
L. Zhou, S. Liu, J. Min, et al., Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1506. doi: 10.1007/s12613-020-2043-y
|
[2] |
S. Laketić, M. Rakin, M. Momčilović, J. Ciganović, Đ. Veljović, and I. Cvijović-Alagić, Surface modifications of biometallic commercially pure Ti and Ti–13Nb–13Zr alloy by picosecond Nd: YAG laser, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 285. doi: 10.1007/s12613-020-2061-9
|
[3] |
D. Wang, S. Pang, C.Y. Zhou, Y. Peng, Z. Wang, and X.Z. Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1618. doi: 10.1007/s12613-020-2165-2
|
[4] |
C. Yang, S.H. Cui, Z.C. Wu, J.Y. Zhu, J. Huang, Z.Y. Ma, R.K.Y. Fu, X.B. Tian, P.K. Chu, and Z.Z. Wu, High efficient co-doping in plasma electrolytic oxidation to obtain long-term self-lubrication on Ti–6Al–4V, Tribol. Int., 160(2021), art. No. 107018. doi: 10.1016/j.triboint.2021.107018
|
[5] |
K. Rokosz, T. Hryniewicz, and Ł. Dudek, Phosphate porous coatings enriched with selected elements via PEO treatment on titanium and its alloys: A review, Materials (Basel), 13(2020), No. 11, art. No. 2468.
|
[6] |
B. Hamrahi, B. Yarmand, and A. Massoudi, Improved in-vitro corrosion performance of titanium using a duplex system of plasma electrolytic oxidation and graphene oxide incorporated silane coatings, Surf. Coat. Technol., 422(2021), art. No. 127558. doi: 10.1016/j.surfcoat.2021.127558
|
[7] |
S.W. Guan, M. Qi, C. Wang, S.Y. Wang, and W.Q. Wang, Enhanced cytocompatibility of Ti–6Al–4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating, Appl. Surf. Sci., 541(2021), art. No. 148547. doi: 10.1016/j.apsusc.2020.148547
|
[8] |
M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II, Appl. Surf. Sci., 258(2012), No. 7, p. 2416. doi: 10.1016/j.apsusc.2011.10.064
|
[9] |
M. Kaseem, S. Fatimah, N. Nashrah, and Y.G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance, Prog. Mater. Sci., 117(2021), art. No. 100735.
|
[10] |
F. Mécuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, and G. Henrion, Diagnostics of an electrolytic microarc process for aluminium alloy oxidation, Surf. Coat. Technol., 200(2005), No. 1-4, p. 804. doi: 10.1016/j.surfcoat.2005.01.076
|
[11] |
M. Maryam, B. Kazem, and A. Fattah-alhosseini, Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review, J. Magnes. Alloys, 9(2021), No. 4, p. 1164. doi: 10.1016/j.jma.2020.11.016
|
[12] |
S. Stojadinović, R. Vasilić, J. Radić-Perić, and M. Perić, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol., 273(2015), p. 1. doi: 10.1016/j.surfcoat.2015.03.032
|
[13] |
M. Laveissière, H. Cerda, J. Roche, L. Cassayre, and L. Arurault, In-depth study of the influence of electrolyte composition on coatings prepared by plasma electrolytic oxidation of TA6V alloy, Surf. Coat. Technol., 361(2019), p. 50. doi: 10.1016/j.surfcoat.2018.12.122
|
[14] |
J.X. Han, Y.L. Cheng, W.B. Tu, T.Y. Zhan, and Y.L. Cheng, The black and white coatings on Ti–6Al–4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte, Appl. Surf. Sci., 428(2018), p. 684. doi: 10.1016/j.apsusc.2017.09.109
|
[15] |
Q.B. Li, W.B. Yang, C.C. Liu, D.A. Wang, and J. Liang, Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes, Surf. Coat. Technol., 316(2017), p. 162. doi: 10.1016/j.surfcoat.2017.03.021
|
[16] |
S. Aliasghari, P. Skeldon, and G.E. Thompson, Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings, Appl. Surf. Sci., 316(2014), p. 463. doi: 10.1016/j.apsusc.2014.08.037
|
[17] |
Y.L. Cheng, X.Q. Wu, Z.G. Xue, E. Matykina, P. Skeldon, and G.E. Thompson, Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte, Surf. Coat. Technol., 217(2013), p. 129. doi: 10.1016/j.surfcoat.2012.12.003
|
[18] |
N. Ao, D.X. Liu, X.H. Zhang, and G.Y. He, Microstructural characteristics of PEO coating: Effect of surface nanocrystallization, J. Alloys Compd., 823(2020), art. No. 153823. doi: 10.1016/j.jallcom.2020.153823
|
[19] |
G. Mortazavi, J.C. Jiang, and E.I. Meletis, Investigation of the plasma electrolytic oxidation mechanism of titanium, Appl. Surf. Sci., 488(2019), p. 370. doi: 10.1016/j.apsusc.2019.05.250
|
[20] |
S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang, Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte, Surf. Coat. Technol., 395(2020), art. No. 125948. doi: 10.1016/j.surfcoat.2020.125948
|
[21] |
X.X. Zhang, G. Cai, Y. Lv, Y.L. Wu, and Z.H. Dong, Growth mechanism of titania on titanium substrate during the early stage of plasma electrolytic oxidation, Surf. Coat. Technol., 400(2020), art. No. 126202. doi: 10.1016/j.surfcoat.2020.126202
|
[22] |
N. Ao, D.X. Liu, S.X. Wang, Q. Zhao, X.H. Zhang, and M.M. Zhang, Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti–6Al–4V alloy, J. Mater. Sci. Technol., 32(2016), No. 10, p. 1071. doi: 10.1016/j.jmst.2016.06.015
|
[23] |
S.A. Salehizadeh, I. Carvalho, R. Serra, S. Calderon V, P.J. Ferreira, A. Cavaleiro, and S. Carvalho, Role of Au incorporation in the electrochemical behavior of Ag/a:C nanocomposite coatings, Surf. Coat. Technol., 401(2020), art. No. 126240. doi: 10.1016/j.surfcoat.2020.126240
|
[24] |
A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation, Corros. Sci., 173(2020), art. No. 108781. doi: 10.1016/j.corsci.2020.108781
|
[25] |
S. Lederer, S. Sankaran, T. Smith, and W. Fürbeth, Formation of bioactive hydroxyapatite-containing titania coatings on CP-Ti 4+ alloy generated by plasma electrolytic oxidation, Surf. Coat. Technol., 363(2019), p. 66. doi: 10.1016/j.surfcoat.2019.02.030
|
[26] |
Y.M. Wang, B.L. Jiang, T.Q. Lei, and L.X. Guo, Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose, Appl. Surf. Sci., 246(2005), No. 1-3, p. 214. doi: 10.1016/j.apsusc.2004.11.010
|
[27] |
A. Lugovskoy and S. Lugovskoy, Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys, Mater. Sci. Eng. C, 43(2014), p. 527. doi: 10.1016/j.msec.2014.07.030
|
[28] |
L.J. Chen and R.K.L. Su, Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution, Constr. Build. Mater., 267(2021), art. No. 121003. doi: 10.1016/j.conbuildmat.2020.121003
|
[29] |
L.M. Chang, Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation, J. Alloys Compd., 468(2009), No. 1-2, p. 462. doi: 10.1016/j.jallcom.2008.01.069
|
[30] |
E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, and G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Appl. Surf. Sci., 255(2008), No. 5, p. 2830. doi: 10.1016/j.apsusc.2008.08.036
|
[31] |
Y.G. Ko, S. Namgung, and D.H. Shin, Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation, Surf. Coat. Technol., 205(2010), No. 7, p. 2525. doi: 10.1016/j.surfcoat.2010.09.055
|
[32] |
D.D. Wang, X.T. Liu, Y.K. Wu, H.P. Han, Z. Yang, Y. Su, X.Z. Zhang, G.R. Wu, and D.J. Shen, Evolution process of the plasma electrolytic oxidation (PEO) coating formed on aluminum in an alkaline sodium hexametaphosphate ((NaPO3)6) electrolyte, J. Alloys Compd., 798(2019), p. 129. doi: 10.1016/j.jallcom.2019.05.253
|