Jianyue Zhang, Xuzhe Zhao, Deʼan Meng, and Qingyou Han, Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1413-1424. https://doi.org/10.1007/s12613-022-2414-7
Cite this article as:
Jianyue Zhang, Xuzhe Zhao, Deʼan Meng, and Qingyou Han, Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1413-1424. https://doi.org/10.1007/s12613-022-2414-7
Research Article

Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet

+ Author Affiliations
  • Corresponding authors:

    Jianyue Zhang    E-mail: zhang.12278@osu.edu

    Qingyou Han    E-mail: hanq@purdue.edu

  • Received: 27 October 2021Revised: 3 December 2021Accepted: 7 January 2022Available online: 12 January 2022
  • A surface nanocrystalline was fabricated by ultrasonic shot peening (USSP) treatment at AZ31 Mg alloy. The effect of nanocrystalline thickness and its placed side (external or internal) on the bendability was studied by a V-bending test. Three durations, 5, 10, and 15 min, were applied to form the surface nanocrystalline with thicknesses of 51, 79, and 145 μm, respectively. Two-side treatment led to a similar bendability as that of as-received. One-side internal treatment for 5 min resulted in an improved bendability while the improvement was limited and degenerated for longer treatment. The improvement was related to the drawing back of the neutral axis. The one-side external treatment also improved the bendability, and the improvement was due to the redistribution of strain and stress during bending. With nanocrystalline at external side, it resulted in a larger stress but a smaller strain at the convex, which prevented the happening of crack during bending.

  • loading
  • [1]
    R.Z. Valiev, Paradoxes of severe plastic deformation, Adv. Eng. Mater., 5(2003), No. 5, p. 296. doi: 10.1002/adem.200310089
    [2]
    T.C. Lowe and R.Z. Valiev, The use of severe plastic deformation techniques in grain refinement, JOM, 56(2004), No. 10, p. 64. doi: 10.1007/s11837-004-0295-z
    [3]
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716. doi: 10.1016/j.cirp.2008.09.005
    [4]
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later, JOM, 68(2016), No. 4, p. 1216. doi: 10.1007/s11837-016-1820-6
    [5]
    M. Rakita, M. Wang, Q.Y. Han, Y.X. Liu, and F. Yin, Ultrasonic shot peening, Int. J. Comput. Mater. Sci. Surf. Eng., 5(2013), No. 3, p. 189.
    [6]
    Q.Y. Han, Ultrasonic processing of materials, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1603. doi: 10.1007/s11663-014-0266-x
    [7]
    G. Liu, J. Lu, and K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A, 286(2000), No. 1, p. 91. doi: 10.1016/S0921-5093(00)00686-9
    [8]
    Q.Q. Sun, Q.Y. Han, X.T. Liu, W. Xu, and J. Li, The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy, Surf. Coat. Technol., 328(2017), p. 469. doi: 10.1016/j.surfcoat.2017.08.028
    [9]
    Q.Q. Sun, Q.Y. Han, R. Xu, K.J. Zhao, and J. Li, Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy, Corros. Sci., 130(2018), p. 218. doi: 10.1016/j.corsci.2017.11.008
    [10]
    Q.Q. Sun and Q.Y. Han, Surface segregation phenomenon of surface severe plastic deformed Al–Zn–Mg–Cu alloys, Materialia, 11(2020), art. No. 100741. doi: 10.1016/j.mtla.2020.100741
    [11]
    V. Pandey, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy, Int. J. Fatigue, 103(2017), p. 426. doi: 10.1016/j.ijfatigue.2017.06.033
    [12]
    T. Persenot, A. Burr, E. Plancher, J.Y. Buffière, R. Dendievel, and G. Martin, Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance, Addit. Manuf., 28(2019), p. 821.
    [13]
    V. Singh, V. Pandey, S. Kumar, N.C.S. Srinivas, and K. Chattopadhyay, Effect of ultrasonic shot peening on surface microstructure and fatigue behavior of structural alloys, Trans. Indian Inst. Met., 69(2016), No. 2, p. 295. doi: 10.1007/s12666-015-0771-x
    [14]
    Y. Liu, B. Jin, D.J. Li, X.Q. Zeng, and J. Lu, Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment, Surf. Coat. Technol., 261(2015), p. 219. doi: 10.1016/j.surfcoat.2014.11.026
    [15]
    S.W. Xia, Y. Liu, D.M. Fu, B. Jin, and J. Lu, Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1245. doi: 10.1016/j.jmst.2016.05.018
    [16]
    X.Y. Wang and D.Y. Li, Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel, Wear, 255(2003), No. 7-12, p. 836. doi: 10.1016/S0043-1648(03)00055-3
    [17]
    S. Kumar, K. Chattopadhyay, G.S. Mahobia, and V. Singh, Hot corrosion behaviour of Ti–6Al–4V modified by ultrasonic shot peening, Mater. Des., 110(2016), p. 196. doi: 10.1016/j.matdes.2016.07.133
    [18]
    X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.S. Man, M.J. Shepard, and T. Zhai, Enhancement of fatigue and corrosion properties of pure Ti by sandblasting, Mater. Sci. Eng. A, 429(2006), No. 1-2, p. 30. doi: 10.1016/j.msea.2006.04.024
    [19]
    Y. Liu, B. Jin, and J. Lu, Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 636(2015), p. 446. doi: 10.1016/j.msea.2015.03.068
    [20]
    Z. Yin, X.C. Yang, X.L. Ma, J. Moering, J. Yang, Y.L. Gong, Y.T. Zhu, and X.K. Zhu, Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment, Mater. Des., 105(2016), p. 89. doi: 10.1016/j.matdes.2016.05.015
    [21]
    P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh, Effect of ultrasonic shot peening on microstructure and mechanical properties of high-nitrogen austenitic stainless steel, J. Mater. Eng. Perform., 23(2014), No. 11, p. 4055. doi: 10.1007/s11665-014-1180-8
    [22]
    Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension–compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
    [23]
    Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg–Gd–Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.03.015
    [24]
    Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jiang, J. Zhao, D.L. Chen, and F.S. Pan, Novel Mg–Bi–Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.11.028
    [25]
    J.Y. Zhang, G.Y. Zhou, B. Jiang, A. Luo, X.Z. Zhao, A.T. Tang, and F.S. Pan, A novel Mg–CaMgSn master alloy for grain refinement in Mg–Al-based alloys, Metals, 11(2021), No. 11, art. No. 1722. doi: 10.3390/met11111722
    [26]
    H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
    [27]
    Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
    [28]
    Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022). No. 1, p. 32.
    [29]
    J.Y. Zhang, P. Peng, J. She, B. Jiang, A.T. Tang, F.S. Pan, and Q.Y. Han, A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization, Surf. Coat. Technol., 396(2020), art. No. 125968. doi: 10.1016/j.surfcoat.2020.125968
    [30]
    J.Y. Zhang, Y.X. Jian, X.Z. Zhao, D.A. Meng, F.S. Pan, and Q.Y. Han, The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment, J. Magnes. Alloys, 9(2021), No. 4, p. 1187. doi: 10.1016/j.jma.2020.11.012
    [31]
    B. Lin, J.Y. Zhang, Q.Q. Sun, J.H. Han, H.B. Li, and S. Wang, Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite, Int. J. Hydrogen Energy, 46(2021), No. 17, p. 10172. doi: 10.1016/j.ijhydene.2020.12.132
    [32]
    H.Q. Sun, Y.N. Shi, and M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surf. Coat. Technol., 202(2008), No. 13, p. 2859. doi: 10.1016/j.surfcoat.2007.10.025
    [33]
    X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment, Mater. Sci. Eng. A, 707(2017), p. 636. doi: 10.1016/j.msea.2017.09.094
    [34]
    M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691. doi: 10.1016/j.jallcom.2020.153691
    [35]
    H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong, and K.Y. Zhao, Mechanical properties of gradient structure Mg alloy, Metall. Mater. Trans. A, 48(2017), No. 9, p. 3961. doi: 10.1007/s11661-017-4216-5
    [36]
    E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663. doi: 10.1016/S1359-6462(03)00396-8
    [37]
    E. Ma, Four approaches to improve the tensile ductility of high-strength nanocrystalline metals, J. Mater. Eng. Perform., 14(2005), No. 4, p. 430. doi: 10.1361/105994905X56179
    [38]
    A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya, Materials for automotive lightweighting, Annu. Rev. Mater. Res., 49(2019), p. 327. doi: 10.1146/annurev-matsci-070218-010134
    [39]
    A.A. Luo, Magnesium: Current and potential automotive applications, JOM, 54(2002), No. 2, p. 42. doi: 10.1007/BF02701073
    [40]
    J.Y. Zhang, Effect of Ultrasonic Shot Peening on Mechanical Properties and Corrosion Resistance of Mg Alloy Sheet [Dissertation], Purdue University, West Lafayette, 2019.
    [41]
    G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22. doi: 10.1016/0001-6160(53)90006-6
    [42]
    B. Jiang, W.J. Liu, D. Qiu, M.X. Zhang, and F.S. Pan, Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy, Mater. Chem. Phys., 133(2012), No. 2-3, p. 611. doi: 10.1016/j.matchemphys.2011.12.087
    [43]
    L. Mattei, D. Daniel, G. Guiglionda, H. Klöcker, and J. Driver, Strain localization and damage mechanisms during bending of AA6016 sheet, Mater. Sci. Eng. A, 559(2013), p. 812. doi: 10.1016/j.msea.2012.09.028
    [44]
    J. Lee, K. Lee, D. Kim, H. Choi, and B. Kim, Spring-back and spring-go behaviors in bending of thick plates of high-strength steel at elevated temperature, Comput. Mater. Sci., 100(2015), p. 76. doi: 10.1016/j.commatsci.2014.10.059
    [45]
    C.T. Wang, G. Kinzel, and T. Altan, Mathematical modeling of plane-strain bending of sheet and plate, J. Mater. Process. Technol., 39(1993), No. 3-4, p. 279. doi: 10.1016/0924-0136(93)90164-2
    [46]
    B. Engel and H. Hassan, Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes, Int. J. Mater. Metall. Eng., 9(2015), No. 2, p. 239.
    [47]
    B. Engel and H.R. Hassan, Investigation of neutral axis shifting in rotary draw bending processes for tubes, Steel Res. Int., 85(2014), No. 7, p. 1209. doi: 10.1002/srin.201300333
    [48]
    G.S. Huang, L.F. Wang, H. Zhang, Y.X. Wang, Z.Y. Shi, and F.S. Pan, Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending, Mater. Lett., 98(2013), p. 47. doi: 10.1016/j.matlet.2013.02.055
    [49]
    L.F. Wang, G.S. Huang, F.S. Pan, and M. Vedani, Effect of strain rate on the shift of neutral layer in AZ31B alloys during V-bending at warm conditions, Mater. Lett., 143(2015), p. 44. doi: 10.1016/j.matlet.2014.12.060
    [50]
    L.F. Wang, G.S. Huang, T.Z. Han, E. Mostaed, F.S. Pan, and M. Vedani, Effect of twinning and detwinning on the spring-back and shift of neutral layer in AZ31 magnesium alloy sheets during V-bend, Mater. Des., 68(2015), p. 80. doi: 10.1016/j.matdes.2014.12.017
    [51]
    K. Yilamu, R. Hino, H. Hamasaki, and F. Yoshida, Air bending and springback of stainless steel clad aluminum sheet, J. Mater. Process. Technol., 210(2010), No. 2, p. 272. doi: 10.1016/j.jmatprotec.2009.09.010
    [52]
    S.A. Kagzi, A.H. Gandhi, H.K. Dave, and H.K. Raval, An analytical model for bending and springback of bimetallic sheets, Mech. Adv. Mater. Struct., 23(2016), No. 1, p. 80. doi: 10.1080/15376494.2014.933990
    [53]
    Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
    [54]
    I.K. Kim and S.I. Hong, Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites, Mater. Des., 49(2013), p. 935. doi: 10.1016/j.matdes.2013.02.052
    [55]
    G.S. Huang, Y.X. Wang, L.F. Wang, T.Z. Han, and F.S. Pan, Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition, Trans. Nonferrous Met. Soc. China, 25(2015), No. 3, p. 732. doi: 10.1016/S1003-6326(15)63658-5
    [56]
    Q.S. Yang, B. Jiang, L.F. Wang, J.H. Dai, J.Y. Zhang, and F.S. Pan, Enhanced formability of a magnesium alloy sheet via in-plane pre-strain paths, J. Alloys Compd., 814(2020), art. No. 152278. doi: 10.1016/j.jallcom.2019.152278
    [57]
    Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, and F.S. Pan, Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling, Prog. Nat. Sci. Mater. Int., 29(2019), No. 2, p. 231. doi: 10.1016/j.pnsc.2019.03.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1041) PDF Downloads(134) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return