Ya Chen, Kailun Zhang, Na Li, Wei Guan, Zhiyuan Li, Haosen Chen, Shuqiang Jiao, and Weili Song, Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 33-43. https://doi.org/10.1007/s12613-022-2416-5
Cite this article as:
Ya Chen, Kailun Zhang, Na Li, Wei Guan, Zhiyuan Li, Haosen Chen, Shuqiang Jiao, and Weili Song, Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 33-43. https://doi.org/10.1007/s12613-022-2416-5
Research Article

Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications

+ Author Affiliations
  • Corresponding authors:

    Haosen Chen    E-mail: chenhs@bit.edu.cn

    Weili Song    E-mail: weilis@bit.edu.cn

  • Received: 25 October 2021Revised: 25 December 2021Accepted: 10 January 2022Available online: 12 January 2022
  • Pyrolytic graphite (PG) with highly aligned graphene layers, present anisotropic electrical and thermal transport behavior, which is attractive in electronic, electrocatalyst and energy storage. Such pristine PG could meeting the limit of electrical conductivity (~2.5 × 104 S·cm−1), although efforts have been made for achieving high-purity sp2 hybridized carbon. For manipulating the electrical conductivity of PG, a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of ${\rm{ AlCl}}^{-}_4 $ into the graphitic interlayers. With the stage evolution at different voltages, variable electrical and thermal transport behaviors could be achieved via controlling ${\rm{ AlCl}}^{-}_4 $ concentrations in the PG because of substantial variation in the electronic density of states. Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions, and the in-plane electrical conductivity of the pristine PG (1.25 × 104 S·cm−1) could be massively promoted to 4.09 × 104 S·cm−1 (${\rm{ AlCl}}^{-}_4 $ intercalated PG), much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding. The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.
  • loading
  • Supplementary InformationIJM-10-2021-1001.docx
  • [1]
    J.G. Tu, J.X. Wang, S.J. Li, W.L. Song, M.Y. Wang, H.M. Zhu, and S.Q. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, Nanoscale, 11(2019), No. 26, p. 12537. doi: 10.1039/C9NR03112J
    [2]
    J.J. Peng, N.Q. Chen, R. He, Z.Y. Wang, S. Dai, and X.B. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method, Angew. Chem. Int. Ed., 56(2017), No. 7, p. 1751. doi: 10.1002/anie.201609565
    [3]
    W.L. Song, L.M. Veca, A. Anderson, M.S. Cao, L. Cao, and Y.P. Sun, Light-weight nanocomposite materials with enhanced thermal transport properties, Nanotechnol. Rev., 1(2012), No. 4, p. 363. doi: 10.1515/ntrev-2012-0023
    [4]
    M.S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 30(1981), No. 2, p. 139. doi: 10.1080/00018738100101367
    [5]
    J.O. Besenhard and H.P. Fritz, The electrochemistry of black carbons, Angew. Chem. Int. Ed., 22(1983), No. 12, p. 950. doi: 10.1002/anie.198309501
    [6]
    T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, and M. Winter, In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications, Z. Anorg. Allg. Chem., 640(2014), No. 10, p. 1996. doi: 10.1002/zaac.201400181
    [7]
    R. Matsumoto and Y. Okabe, Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets, Synth. Met., 212(2016), p. 62. doi: 10.1016/j.synthmet.2015.11.033
    [8]
    H. Zabel, and S.A. Solin, Graphite Intercalation Compounds Ⅱ: Transport and Electronic Properties, Springer, Berlin, 1992.
    [9]
    L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F.S. Lu, P.Y. Zhang, Y. Lin, R. Fee, J.W. Connell, and Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21(2009), No. 20, p. 2088. doi: 10.1002/adma.200802317
    [10]
    W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133. doi: 10.1103/PhysRev.140.A1133
    [11]
    R. Nityananda, P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Resonance, 22(2017), No. 8, p. 809. doi: 10.1007/s12045-017-0529-3
    [12]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [13]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
    [14]
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132(2010), No. 15, art. No. 154104. doi: 10.1063/1.3382344
    [15]
    S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32(2011), No. 7, p. 1456. doi: 10.1002/jcc.21759
    [16]
    H. Zabel, and S. Solin, Graphite Intercalation Compounds I: Structure and Dynamics. Springer, Berlin, 1990.
    [17]
    J.H. Xu, D.E. Turney, A.L. Jadhav, and R.J. Messinger, Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum–graphite batteries, ACS Appl. Energy Mater., 2(2019), No. 11, p. 7799. doi: 10.1021/acsaem.9b01184
    [18]
    S. Venkatachalam, M. Depriester, A.H. Sahraoui, B. Capoen, M.R. Ammar, and D. Hourlier, Thermal conductivity of kapton-derived carbon, Carbon, 114(2017), p. 134. doi: 10.1016/j.carbon.2016.11.072
    [19]
    M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547, p. 324. doi: 10.1038/nature14340
    [20]
    S.C. Jung, Y. Kang, D. Yoo, J.W. Choi, and Y. Han, Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery, J. Phys. Chem. C, 120(2016), No. 13, p. 13384.
    [21]
    R.D. Mckerracher, A. Holland, A. Cruden, and R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminium-ion battery, Carbon, 144(2019), p. 333. doi: 10.1016/j.carbon.2018.12.021
    [22]
    G.A. Elia, G. Greco, P.H. Kamm, F. García-Moreno, S. Raoux, and R. Hahn, Simultaneous X-ray diffraction and tomography operando investigation of aluminum/graphite batteries, Adv. Funct. Mater., 30(2020), No. 43, art. No. 2003913. doi: 10.1002/adfm.202003913
    [23]
    T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
    [24]
    P. Bhauriyal, A. Mahata, and B. Pathak, The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery, Phys. Chem. Chem. Phys., 19(2017), No. 11, p. 7980. doi: 10.1039/C7CP00453B
    [25]
    Y. Sui, C. Liu, R. Masse, and Z. Neale, Dual-ion batteries: the emerging alternative rechargeable batteries, Energy Storage Mater. 25(2020), p. 1.
    [26]
    G.A. Elia, I. Hasa, G. Greco, T. Diemant, K. Marquardt, K. Hoeppner, R.J. Behm, A. Hoell, S. Passerini, and R. Hahn, Insights into the reversibility of aluminum graphite batteries, J. Mater. Chem. A, 5(2017), No. 20, p. 9682. doi: 10.1039/C7TA01018D
    [27]
    B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179. doi: 10.1007/s12613-020-2031-2
    [28]
    S. Takahashi, N. Koura, S. Kohara, M.L. Saboungi, and L.A. Curtiss, Technological and scientific issues of room-temperature molten salts, Plasmas Ions, 2(1999), No. 3-4, p. 91. doi: 10.1016/S1288-3255(99)00105-7
    [29]
    H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
    [30]
    H. Kim, J. Hong, G. Yoon, H. Kim, K.Y. Park, M.S. Park, W.S. Yoon, and K. Kang, Sodium intercalation chemistry in graphite, Energy Environ. Sci., 8(2015), No. 10, p. 2963. doi: 10.1039/C5EE02051D
    [31]
    A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev., 56(1939), No. 10, p. 978. doi: 10.1103/PhysRev.56.978
    [32]
    T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.W. Meyer, S. Passerini, and M. Winter, Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc., 159(2012), No. 11, p. A1755. doi: 10.1149/2.011211jes
    [33]
    M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin, B.J. Hwang, and H.J. Dai, High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte, PNAS, 114(2017), No. 5, p. 834. doi: 10.1073/pnas.1619795114
    [34]
    X.L. Zhou, Q.R. Liu, C.L. Jiang, B.F. Ji, X.L. Ji, Y.B. Tang, and H.M. Cheng, Strategies towards low-cost dual-ion batteries with high performance, Angew. Chem. Int. Ed., 59(2020), No. 10, p. 3802. doi: 10.1002/anie.201814294
    [35]
    Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
    [36]
    Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, and W.C. Ren, Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film, Adv. Mater., 32(2020), No. 14, art. No. 1907411. doi: 10.1002/adma.201907411
    [37]
    M.L. Yang, Q. Wei, J.J. Li, Y. Wang, H.F. Guo, L.Y. Gao, L. Huang, X.D. He, Y.B. Li, and Y. Yuan, Flexible composite carbon films prepared by a pancake-making method for electromagnetic interference shielding, Adv. Mater. Interfaces, 7(2020), No. 7, art. No. 1901815. doi: 10.1002/admi.201901815
    [38]
    Y.H. Liu, K.Y. Zhang, Y.L. Mo, L. Zhu, B.W. Yu, F. Chen, and Q. Fu, Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties, Compos. Sci. Technol., 168(2018), p. 28. doi: 10.1016/j.compscitech.2018.09.005
    [39]
    E.Z. Zhou, J.B. Xi, Y.J. Liu, Z. Xu, Y. Guo, L. Peng, W.W. Gao, J. Ying, Z.C. Chen, and C. Gao, Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding, Nanoscale, 9(2017), No. 47, p. 18613. doi: 10.1039/C7NR07030F
    [40]
    D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater., 25(2015), No. 4, p. 559. doi: 10.1002/adfm.201403809
    [41]
    W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, and M.S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding, J. Mater. Chem. A, 3(2015), No. 5, p. 2097. doi: 10.1039/C4TA05939E
    [42]
    B. Shen, W.T. Zhai, and W.G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater., 24(2014), No. 28, p. 4542. doi: 10.1002/adfm.201400079
    [43]
    W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, and H.F. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding, Carbon, 77(2014), p. 130. doi: 10.1016/j.carbon.2014.05.014
    [44]
    W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, and L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon, 66(2014), p. 67. doi: 10.1016/j.carbon.2013.08.043
    [45]
    W.L. Song, C.C. Gong, H.M. Li, X.D. Cheng, M.J. Chen, X.J. Yuan, H.S. Chen, Y.Z. Yang, and D.N. Fang, Graphene-based sandwich structures for frequency selectable electromagnetic shielding, ACS Appl. Mater. Interfaces, 9(2017), No. 41, p. 36119. doi: 10.1021/acsami.7b08229
    [46]
    M.H. Al-Saleh and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon, 47(2009), No. 7, p. 1738. doi: 10.1016/j.carbon.2009.02.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(463) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return