Seshadri Seetharaman, Lijun Wang, and Haijuan Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 750-757. https://doi.org/10.1007/s12613-022-2424-5
Cite this article as:
Seshadri Seetharaman, Lijun Wang, and Haijuan Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 750-757. https://doi.org/10.1007/s12613-022-2424-5
Invited Review

Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB

+ Author Affiliations
  • Corresponding author:

    Haijuan Wang    E-mail: wanghaijuan@ustb.edu.cn

  • Received: 14 October 2021Revised: 29 December 2021Accepted: 25 January 2022Available online: 26 January 2022
  • As the steel industry expands worldwide, slag dumps with transition metals (especially chromium and vanadium) are becoming more common, posing a serious environmental threat. Understanding the properties of slags containing transition metal oxides, as well as how to use the slags to recover and recycle metal values, is critical. Toward this end, the University of Science and Technology Beijing (USTB) and Royal Institute of Technology (KTH) have been collaborating on slags containing transition metals for decades. The research was carried out from a fundamental viewpoint to get a better understanding of the structure of these slags and their properties, as well as industrial practices. The research focused on the three “R”s, viz. retention, recovery, and recycling. The present paper attempts to highlight some of the important achievements in these joint studies.
  • loading
  • [1]
    L.J. Wang, K.C. Chou, and S. Seetharaman, A new method for evaluating some thermophysical properties for ternary system, High Temp. Mater. Processes, 27(2008), No. 2, p. 119.
    [2]
    Q.F. Shu, J.Y. Zhang, D. Sichen, and S. Seetharaman, ThermoSlag—A prediction and evaluation software on thermophysical and thermodynamic properties of molten slags, [in] CSM 2003 Annual Meeting Proceedings, 2003, Beijing, p. 598.
    [3]
    M. Persson, J.Y. Zhang, and S. Seetharaman, A thermodynamic approach to a density model for oxide melts, Steel Res. Int., 78(2007), No. 4, p. 290. doi: 10.1002/srin.200705894
    [4]
    P.L. Dong, X.D. Wang, and S. Seetharaman, Thermodynamic activity of chromium oxide in CaO–SiO2–MgO–Al2O3–CrOx melts, Steel Res. Int., 80(2009), No. 3, p. 202. doi: 10.2374/SRI08SP124
    [5]
    P.L. Dong, X.D. Wang, and S. Seetharaman, Activity of VO1.5 in CaO–SiO2–MgO–Al2O3 slags at low vanadium contents and low oxygen pressures, Steel Res. Int., 80(2009), No. 4, p. 251. doi: 10.2374/SRI08SP138
    [6]
    A. Werme, Distribution of vanadium between SiO2 rich slags and carbon saturated liquid iron, Steel Res., 59(1988), No. 1, p. 6. doi: 10.1002/srin.198800266
    [7]
    L.J. Wang, J.P. Yu, K.C. Chou, and S. Seetharaman, Effects of MgO and Al2O3 addition on redox state of chromium in CaO–SiO2–CrOx slag system by XPS method, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1802. doi: 10.1007/s11663-015-0353-7
    [8]
    H.J. Wang, L.J. Wang, and S. Seetharaman, Determination of vanadium oxidation states in CaO–MgO–Al2O3–SiO2–VOx system by K edge XANES method, Steel Res. Int., 87(2016), No. 2, p. 199. doi: 10.1002/srin.201500256
    [9]
    L.J. Wang, L.D. Teng, K.C. Chou, and S. Seetharaman, Determination of vanadium valence state in CaO–MgO–Al2O3–SiO2 system by high-temperature mass spectrometry, Metall. Mater. Trans. B, 44(2013), No. 4, p. 948. doi: 10.1007/s11663-013-9836-6
    [10]
    L.J. Wang and S. Seetharaman, Experimental studies on the oxidation states of chromium oxides in slag systems, Metall. Mater. Trans. B, 41(2010), No. 5, p. 946. doi: 10.1007/s11663-010-9383-3
    [11]
    H.J. Wang, Investigations on the Oxidation of Iron–Chromium and Iron–Vanadium Molten Alloys [Dissertation], KTH Sweden, 2010.
    [12]
    W.G. Pei and O. Wijk, Activity-composition relationships in liquid nickel–chromium alloys, Scand. J. Metall., 23(1994), No. 5, p. 224.
    [13]
    E.B. Pretorius and A. Muan, Activity–composition relations of chromium oxide in silicate melts at 1500°C under strongly reducing conditions, J. Am. Ceram. Soc., 75(1992), No. 6, p. 1364. doi: 10.1111/j.1151-2916.1992.tb04196.x
    [14]
    Y.P. Xiao and L. Holappa, Determination of activities in slags containing chromium oxides, ISIJ Int., 33(1993), No. 1, p. 66. doi: 10.2355/isijinternational.33.66
    [15]
    K. Morita, M. Mori, M.X. Guo, T. Ikagawa, and N. Sano, Activity of chromium oxide and phase relations for the CaO–SiO2–CrOx system at 1873 K under moderately reducing conditions, Steel Res., 70(1999), No. 8-9, p. 319. doi: 10.1002/srin.199905647
    [16]
    A.J. Berry and H.St.C. O’Neill, A XANES determination of the oxidation state of chromium in silicate glasses, Am. Mineral., 89(2004), No. 5-6, p. 790. doi: 10.2138/am-2004-5-613
    [17]
    M.G. Frohberg and K. Richter, Reduction and oxidation equilibria between bivalent and trivalent chromium in liquid basic lime/silica/chromium oxide slags, Arch. Eisenbuttenwes., 39(1968), p. 799.
    [18]
    L.J. Wang, Experimental and Modelling Studies of the Thermophysical and Thermochemical Properties of Some Slag Systems [Dissertation], KTH Sweden, 2009.
    [19]
    R. Mittelstadt and K. Schwerdtfeger, The dependence of the oxidation state of vanadium on the oxygen pressure in melts of VOx, Na2O–VOx, and CaO–SiO2–VOx, Metall. Trans. B, 21(1990), No. 1, p. 111. doi: 10.1007/BF02658122
    [20]
    R. Inoue and H. Suito, Distribution of vanadium between liquid iron and MgO saturated slags of the system CaO–MgO–FeOx–SiO2, ISIJ Int., 22(1982), No. 9, p. 705. doi: 10.2355/isijinternational1966.22.705
    [21]
    L.J. Wang and S. Seetharaman, Experimental studies on the sulfide capacities of CaO–SiO2–CrOx slags, Metall. Mater. Trans. B, 41(2010), No. 2, p. 367. doi: 10.1007/s11663-009-9338-8
    [22]
    L.J. Wang, Y.X. Wang, Q. Wang, and K.C. Chou, Raman structure investigations of CaO–MgO–Al2O3–SiO2–CrOx and its correlation with sulfide capacity, Metall. Mater. Trans. B, 47(2016), No. 1, p. 10. doi: 10.1007/s11663-015-0469-9
    [23]
    L.J. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman, An insight into slag structure from sulphide capacities, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1338. doi: 10.1007/s11663-012-9713-8
    [24]
    H.J. Wang, N.N. Viswanathan, N.B. Ballal, and S. Seetharaman, Modeling of reactions between gas bubble and molten metal bath—Experimental validation in the case of decarburization of Fe–Cr–C melts, High Temp. Mater. Processes, 28(2009), No. 6, p. 407. doi: 10.1515/HTMP.2009.28.6.407
    [25]
    H.J. Wang, N.N. Viswanathan, N.B. Ballal, and S. Seetharaman, Modelling of physico-chemical phenomena between gas inside a bubble and liquid metal during injection of oxidant gas, Int. J. Chem. Reactor Eng., 8(2010), No. 1, art. No. A33. doi: 10.2202/1542-6580.2127
    [26]
    H.J. Wang, M.M. Nzotta, L. Teng, and S. Seetharaman, Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention, J. Min. Metall. Sect. B Metall., 49(2013), No. 2, p. 175. doi: 10.2298/JMMB120813010W
    [27]
    H.J. Wang, H.C. Yu, S.J. Chu, D.C. Wu, and Z.B. Xu, Exploratory application of CO2 in M-LCFeCr production with converter process, Chin. J. Eng., 38(2016), No. S1, p. 146.
    [28]
    H.J. Wang, H.C. Yu, and Z.B. Xu. Influence of CO2 on the melt temperature of medium and low carbon ferrochrome during refining in converter, China Sciencepaper, 12(2017), No. 4, p. 434.
    [29]
    Y.L. Gu, H.J. Wang, R. Zhu, J. Wang, M. Lv, and H. Wang, Study on experiment and mechanism of bottom blowing CO2 during the LF refining process, Steel Res. Int., 85(2014), No. 4, p. 589. doi: 10.1002/srin.201300106
    [30]
    H.J. Wang, H. Yu, L. Teng, and S. Seetharaman, Evaluation on material and heat balance of EAF processes with introduction of CO2, J. Min. Metall. Sect. B., 52(2016), No. 1, p. 1. doi: 10.2298/JMMB150627002W
    [31]
    H.J. Wang, R. Zhu, X.L. Wang, and Z.Z. Li, Utilization of CO2 in metallurgical processes in China, Miner. Process. Extr. Metall., 126(2017), No. 1-2, p. 47. doi: 10.1080/03719553.2016.1255401
    [32]
    H.J. Wang, L.D. Teng, J.Y. Zhang, and S. Seetharaman, Oxidation of Fe–V melts under CO2–O2 gas mixtures, Metall. Mater. Trans. B, 41(2010), No. 5, p. 1042. doi: 10.1007/s11663-010-9391-3
    [33]
    S. Seetharaman, T. Shyrokykh, C. Schröder, and P.R. Scheller, Vaporization studies from slag surfaces using a thin film technique, Metall. Mater. Trans. B, 44(2013), No. 4, p. 783. doi: 10.1007/s11663-013-9865-1
    [34]
    T. Shyrokykh, X.W. Wei, S. Seetharaman, and O. Volkova, Vaporization of vanadium pentoxide from CaO–SiO2–VOx slags during alumina dissolution, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1472. doi: 10.1007/s11663-021-02114-9
    [35]
    S. Seetharaman, G.J. Albertsson, and P. Scheller, Studies of vaporization of chromium from thin slag films at steelmaking temperatures in oxidizing atmosphere, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1280. doi: 10.1007/s11663-013-9904-y
    [36]
    X.L. Ge, O. Grinder, and S. Seetharaman, The salt extraction process: A novel route for metal extraction Part I – Cr, Fe recovery from EAF slags and low grade chromite ores, Miner. Process. Extr. Metall., 119(2010), No. 1, p. 27. doi: 10.1179/037195509X12585446038726
    [37]
    X.L. Ge and S. Seetharaman, The salt extraction process – a novel route for metal extraction Part 2 – Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93. doi: 10.1179/174328510X498116
    [38]
    S. Seetharaman and O. Grinder, New extraction process for recovery of metals in glass deposits, [in] Linnaeus ECO-TECH´14, Kalmar, Sweden, 2014.
    [39]
    S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
    [40]
    X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
    [41]
    A. Abbasalizadeh, Electrochemical Recovery of Rare Earth Metals in Molten Salts [Dissertation], Delft University of Technology, Netherlands, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1932) PDF Downloads(63) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return