Yanyu Zhao, Wei Chen, Shusen Cheng, and Lifeng Zhang, Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 758-766. https://doi.org/10.1007/s12613-022-2425-4
Cite this article as:
Yanyu Zhao, Wei Chen, Shusen Cheng, and Lifeng Zhang, Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 758-766. https://doi.org/10.1007/s12613-022-2425-4
Research Article

Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model

+ Author Affiliations
  • Corresponding authors:

    Wei Chen    E-mail: weichen@ysu.edu.cn

    Lifeng Zhang    E-mail: zhanglifeng@ncut.edu.cn

  • Received: 30 November 2021Revised: 13 January 2022Accepted: 24 January 2022Available online: 26 January 2022
  • A three-dimensional mathematical model was established to predict the multiphase flow, motion and dispersion of desulfurizer particles, and desulfurization of hot metal during the Kanbara reactor (KR) process. The turbulent kinetic energy–turbulent dissipation rate (k–ε) turbulence model, volume-of-fluid multiphase model, discrete-phase model, and unreacted core model for the reaction between the hot metal and particles were coupled. The measured sulfur content of the hot metal with time during the actual KR process was employed to validate the current mathematical model. The distance from the lowest point of the liquid level to the bottom of the ladle decreased from 3170 to 2191 mm when the rotation speed increased from 30 to 110 r/min, which had a great effect on the dispersion of desulfurizer particles. The critical rotation speed for the vortex to reach the upper edge of the stirring impeller was 70 r/min when the immersion depth was 1500 mm. The desulfurization rate increased with the increase in the impeller rotation speed, whereas the influence of the immersion depth was relatively small. Formulas for different rotation parameters on the desulfurization rate constant and turbulent energy dissipation rate were proposed to evaluate the variation in sulfur content over time.
  • loading
  • [1]
    L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
    [2]
    C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Review on desulfurization in electroslag remelting, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 18. doi: 10.1007/s12613-020-2075-3
    [3]
    K. Kanbara, T. Nisugi, and O. Shiraishi, Desulfurization process using mechanical impeller, Tetsu-to-Hagané, 58(1972), No. 4, p. S26.
    [4]
    Y. Nakai, I. Sumi, H. Matsuno, N. Kikuchi, and Y. Kishimoto, Effect of flux dispersion behavior on desulfurization of hot metal, ISIJ Int., 50(2010), No. 3, p. 403. doi: 10.2355/isijinternational.50.403
    [5]
    Y. Liu, M. Sano, T.A. Zhang, Q. Wang, and J.C. He, Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining, ISIJ Int., 49(2009), No. 1, p. 17. doi: 10.2355/isijinternational.49.17
    [6]
    S. Horiuchi, M.A. Uddin, Y. Kato, Y. Takahashi, and Y.I. Uchida, Mass transfer between different phases in a mechanically-stirred vessel and its comparison with that in a gas-stirred one, ISIJ Int., 54(2014), No. 1, p. 87. doi: 10.2355/isijinternational.54.87
    [7]
    Y. Nakai, Y. Hino, I. Sumi, N. Kikuchi, Y. Uchida, and Y. Miki, Effect of flux addition method on hot metal desulfurization by mechanical stirring process, ISIJ Int., 55(2015), No. 7, p. 1398. doi: 10.2355/isijinternational.55.1398
    [8]
    M. Li, Y.B. Tan, J.L. Sun, D. Xie, and Z. Liu, Drawdown mechanism of light particles in baffled stirred tank for the KR desulphurization process, Chin. J. Chem. Eng., 27(2019), No. 2, p. 247. doi: 10.1016/j.cjche.2018.05.019
    [9]
    Y. Nakai, I. Sumi, N. Kikuchi, K. Tanaka, and Y. Miki, Powder blasting in hot metal desulfurization by mechanical stirring process, ISIJ Int., 57(2017), No. 6, p. 1029. doi: 10.2355/isijinternational.ISIJINT-2017-063
    [10]
    Y. Liu, Z.M. Zhang, S. Masamichi, J. Zhang, P. Shao, and T.A. Zhang, Improvement of impeler blade structure for gas injection refining under mechanical stirring, J. Iron Steel Res. Int., 21(2014), No. 2, p. 135. doi: 10.1016/S1006-706X(14)60022-4
    [11]
    M.L. He, N. Wang, M. Chen, M. Chen, and C.F. Li, Distribution and motion behavior of desulfurizer particles in hot metal with mechanical stirring, Powder Technol., 361(2020), p. 455. doi: 10.1016/j.powtec.2019.05.056
    [12]
    Q. Wang, S.Y. Jia, F.G. Tan, G.Q. Li, D.G. Ouyang, S.H. Zhu, W. Sun, and Z. He, Numerical study on desulfurization behavior during kanbara reactor hot metal treatment, Metall. Mater. Trans. B, 52(2021), No. 2, p. 1085. doi: 10.1007/s11663-021-02080-2
    [13]
    T. Xu, G. Song, Y. Yang, P.X. Ge, and L.X. Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1387. doi: 10.1007/s12613-021-2283-5
    [14]
    V.V. Visuri, T. Vuolio, T. Haas, and T. Fabritius, A review of modeling hot metal desulfurization, Steel Res. Int., 91(2020), No. 4, art. No. 1900454. doi: 10.1002/srin.201900454
    [15]
    Y.J. Lee and K.W. Yi, Improvement of desulfurization efficiency via numerical simulation analysis of transport phenomena of kanbara reactor process, Met. Mater. Int., (2021). DOI: 10.1007/s12540-021-00973-0
    [16]
    D. Lindström and S.C. Du, Kinetic study on desulfurization of hot metal using CaO and CaC2, Metall. Mater. Trans. B, 46(2015), No. 1, p. 83. doi: 10.1007/s11663-014-0195-8
    [17]
    T. Mitsuo, T. Shōji, Y. Hatta, H. Ono, H. Mori, and T. Kai, Improvement of desulfurization by addition of aluminum to hot metal in the lime injection process, Trans. Jpn. Inst. Met., 23(1982), No. 12, p. 768. doi: 10.2320/matertrans1960.23.768
    [18]
    J.H. Ji, R.Q. Liang, and J.C. He, Numerical simulation on bubble behavior of disintegration and dispersion in stirring-injection magnesium desulfurization process, ISIJ Int., 57(2017), No. 3, p. 453. doi: 10.2355/isijinternational.ISIJINT-2016-511
    [19]
    K. Feng, A.J. Xu, D.F. He, and L.Z. Yang, Case-based reasoning method based on mechanistic model correction for predicting endpoint sulphur content of molten iron in KR desulphurization, Ironmaking Steelmaking, 47(2020), No. 7, p. 799. doi: 10.1080/03019233.2019.1615307
    [20]
    F. Oeters, Kinetic treatment of chemical reactions in emulsion metallurgy, Steel Res., 56(1985), No. 2, p. 69. doi: 10.1002/srin.198500600
    [21]
    K. Nakanishi, N. Bessho, Y. Takada, A. Ejima, M. Kuga, J. Katsuki, and M. Kawana, On the desulfurization of the molten metal in an open ladle stirred by an impeller modified by gas injection, Tetsu-to-Hagané, 64(1978), No. 10, p. 1528.
    [22]
    W. Chen, Y. Ren, and L.F. Zhang, Large eddy simulation on the two-phase flow in a water model of continuous casting strand with gas injection, Steel Res. Int., 90(2019), No. 4, art. No. 1800287. doi: 10.1002/srin.201800287
    [23]
    W. Chen, Y. Ren, L.F. Zhang, and P.R. Scheller, Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES + VOF + DPM model, JOM, 71(2019), No. 3, p. 1158. doi: 10.1007/s11837-018-3255-8
    [24]
    W. Chen and L.F. Zhang, Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands, Metall. Mater. Trans. B, 52(2021), No. 1, p. 528. doi: 10.1007/s11663-020-02046-w
    [25]
    W. Chen, L.F. Zhang, Y.D. Wang, S. Ji, Y. Ren, and W. Yang, Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting, Powder Technol., 390(2021), p. 539. doi: 10.1016/j.powtec.2021.05.101
    [26]
    F. Oeters, P. Strohmenger, and W. Pluschkell, Kinetik der entschwefelung von roheisenschmelzen mit kalk und erdgas, Arch. Eisenhüttenwesen, 44(1973), No. 10, p. 727.
    [27]
    Y. Sano, N. Yamaguchi, and T. Adachi, Mass transfer coefficients for suspended particles in agitated vessels and bubble columns, J. Chem. Eng. Jpn., 7(1974), No. 4, p. 255. doi: 10.1252/jcej.7.255
    [28]
    S. Asai, M. Kawachi, and I. Muchi, Mass transfer rate in ladle refining processes, [in] Proceedings of the Proceedings - SCANINJECT 3, 3rd International Conference on Refining of Iron and Steel by Powder Injection, Lulea, 1983, p. 1.
    [29]
    H. Lachmund, Y.K. Xie, T. Buhles, and W. Pluschkell, Slag emulsification during liquid steel desulphurisation by gas injection into the ladle, Steel Res. Int., 74(2003), No. 2, p. 77. doi: 10.1002/srin.200300164
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(2236) PDF Downloads(121) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return