Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma,  and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1406-1412. https://doi.org/10.1007/s12613-022-2427-2
Cite this article as:
Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma,  and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1406-1412. https://doi.org/10.1007/s12613-022-2427-2
Research Article

Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase

+ Author Affiliations
  • Corresponding author:

    Wenbo Yu    E-mail: wbyu@bjtu.edu.cn

  • Received: 7 September 2021Revised: 23 January 2022Accepted: 25 January 2022Available online: 26 January 2022
  • Magnesium composites reinforced by N-deficient Ti2AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional (3D) co-continuous porous Ti2AlNx (x = 0.9, 1.0) preforms. The relationship between their mechanical properties and microstructure is discussed with the assessment of 2D and 3D characterization. X-ray diffraction (XRD) and scanning electron microscopy detected no impurities. The 3D reconstruction shows that the uniformly distributed pores in Ti2AlNx preforms are interconnected, which act as infiltration tunnels for the melt Mg. The compressive yield strength and microhardness of Ti2AlN0.9/Mg are 353 MPa and 1.12 GPa, respectively, which are 8.55% and 6.67% lower than those of Ti2AlN/Mg, respectively. The typical delamination and kink band occurred in Ti2AlNx under compressive and Vickers hardness (VH) tests. Owing to the continuous skeleton structure and strong interfacial bonding strength, the crack initiated in Ti2AlNx was blocked by the plastic Mg matrix. This suggests the possibility of regulating the mechanical performance of Ti2AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti2AlN skeleton.

  • loading
  • [1]
    M.O. Pekguleryuz and A.A. Kaya, Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater., 5(2003), No. 12, p. 866. doi: 10.1002/adem.200300403
    [2]
    V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Y.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
    [3]
    Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
    [4]
    X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
    [5]
    K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles—A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57. doi: 10.1016/j.jma.2020.08.018
    [6]
    M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen, Kinking nonlinear elastic solids, nanoindentations, and geology, Phys. Rev. Lett., 92(2004), No. 25, art. No. 255508. doi: 10.1103/PhysRevLett.92.255508
    [7]
    M.W. Barsoum, The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem., 28(2000), No. 1-4, p. 201. doi: 10.1016/S0079-6786(00)00006-6
    [8]
    X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, and D.L. Peng, Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM, Compos. Sci. Technol., 67(2007), No. 11-12, p. 2253. doi: 10.1016/j.compscitech.2007.01.022
    [9]
    B. Inem and G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, J. Mater. Sci., 28(1993), No. 16, p. 4427. doi: 10.1007/BF01154952
    [10]
    G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
    [11]
    H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
    [12]
    J.Y. Wang, Y.C. Zhou, T. Liao, J. Zhang, and Z.J. Lin, A first-principles investigation of the phase stability of Ti2AlC with Al vacancies, Scripta Mater., 58(2008), No. 3, p. 227. doi: 10.1016/j.scriptamat.2007.09.048
    [13]
    H. Wang, H. Han, G. Yin, et al., First-principles study of vacancies in Ti3SiC2 and Ti3AlC2, Materials, 10(2017), No. 2, art. No. 103. doi: 10.3390/ma10020103
    [14]
    W.B. Yu, X.J. Wang, H.B. Zhao, et al., Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting, J. Alloys Compd., 702(2017), p. 199. doi: 10.1016/j.jallcom.2017.01.231
    [15]
    S. Amini, J.M.C. Gallego, L. Daemen, et al., On the stability of Mg nanograins to coarsening after repeated melting, Nano Lett., 9(2009), No. 8, p. 3082. doi: 10.1021/nl9015683
    [16]
    B. Anasori, S. Amini, V. Presser, and M.W. Barsoum, Nanocrystalline Mg-matrix composites with ultrahigh damping properties, [in] Magnesium Technology 2011, Springer, Cham, 2011, p. 463.
    [17]
    W.B. Yu, X.B. Li, M. Vallet, and L. Tian, High temperature damping behavior and dynamic Young’s modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles, Mech. Mater., 129(2019), p. 246. doi: 10.1016/j.mechmat.2018.12.001
    [18]
    W.B. Yu, D.Q. Chen, L. Tian, H.B. Zhao, and X.J. Wang, Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases, J. Mater. Sci. Technol., 35(2019), No. 3, p. 275. doi: 10.1016/j.jmst.2018.07.003
    [19]
    J. Liu, J. Binner, and R. Higginson, Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration, Wear, 276-277(2012), p. 94. doi: 10.1016/j.wear.2011.12.008
    [20]
    C. Lei, Y. Zhou, H.X. Zhai, et al., Thermal shock behavior of co-continuous TiCx–Cu cermets in air and anaerobic environment, Ceram. Int., 47(2021), No. 12, p. 16422. doi: 10.1016/j.ceramint.2020.10.246
    [21]
    C. Lei, H.X. Zhai, Z.Y. Huang, et al., Fabrication, microstructure and mechanical properties of co-continuous TiCx/Cu–Cu4Ti composites prepared by pressureless-infiltration method, Ceram. Int., 45(2019), No. 3, p. 2932. doi: 10.1016/j.ceramint.2018.09.187
    [22]
    M. Pavese, M. Valle, and C. Badini, Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites, J. Eur. Ceram. Soc., 27(2007), No. 1, p. 131. doi: 10.1016/j.jeurceramsoc.2006.05.080
    [23]
    H.J. Wang, Z.Y. Huang, J.C. Yi, et al., Microstructure and high-temperature mechanical properties of co-continuous (Ti3AlC2+Al3Ti)/2024Al composite fabricated by pressureless infiltration, Ceram. Int., 48(2022), No. 1, p. 1230. doi: 10.1016/j.ceramint.2021.09.208
    [24]
    C.L. Zhou, X.Y. Wu, T.L. Ngai, L.J. Li, S. Ngai, and Z.M. Chen, Al alloy/Ti3SiC2 composites fabricated by pressureless infiltration with melt-spun Al alloy ribbons, Ceram. Int., 44(2018), No. 6, p. 6026. doi: 10.1016/j.ceramint.2017.12.212
    [25]
    D.A.H. Hanaor, L. Hu, W.H. Kan, et al., Compressive performance and crack propagation in Al alloy/Ti2AlC composites, Mater. Sci. Eng. A, 672(2016), p. 247. doi: 10.1016/j.msea.2016.06.073
    [26]
    W.B. Yu, W.Z. Jia, F. Guo, et al., The correlation between N deficiency and the mechanical properties of the Ti2AlNy MAX phase, J. Eur. Ceram. Soc., 40(2020), No. 6, p. 2279. doi: 10.1016/j.jeurceramsoc.2020.02.014
    [27]
    J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans., 2(1971), No. 7, p. 1979. doi: 10.1007/BF02913433
    [28]
    S.J. Zinkle, D.H. Plantz, A.E. Bair, R.A. Dodd, and G.L. Kulcinski, Correlation of the yield strength and mlcrohardnesss of high-strength, high-conductivity copper alloys, J. Nucl. Mater., 133-134(1985), p. 685. doi: 10.1016/0022-3115(85)90236-3
    [29]
    L. Vandeperre and W.J. Clegg, The correlation between hardness and yield strength of hard materials, Mater. Sci. Forum, 492-493(2005), p. 555. doi: 10.4028/www.scientific.net/MSF.492-493.555
    [30]
    S.B. Li, W.B. Yu, H.X. Zhai, G.M. Song, W.G. Sloof, and S.V.D. Zwaag, Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics, J. Eur. Ceram. Soc., 31(2011), No. 1-2, p. 217. doi: 10.1016/j.jeurceramsoc.2010.08.014
    [31]
    B. Anasori, E.N. Caspi, and M.W. Barsoum, Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles, Mater. Sci. Eng. A, 618(2014), p. 511. doi: 10.1016/j.msea.2014.09.039
    [32]
    K. Kozak, M.M. Bućko, L. Chlubny, J. Lis, G. Antou, and T. Chotard, Influence of composition and grain size on the damage evolution in MAX phases investigated by acoustic emission, Mater. Sci. Eng. A, 743(2019), p. 114. doi: 10.1016/j.msea.2018.11.063
    [33]
    C.L. Yang, B. Zhang, D.C. Zhao, et al., Microstructure evolution of as-cast AlN/AZ91 composites and room temperature compressive properties, J. Alloys Compd., 774(2019), p. 573. doi: 10.1016/j.jallcom.2018.10.041
    [34]
    R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10(2011), No. 11, p. 817. doi: 10.1038/nmat3115
    [35]
    W. Yu, V. Mauchamp, T. Cabioc’h, et al., Solid solution effects in the Ti2Al(CxNy) MAX phases: Synthesis, microstructure, electronic structure and transport properties, Acta Mater., 80(2014), p. 421. doi: 10.1016/j.actamat.2014.07.064
    [36]
    W.J. Wang, V. Gauthier-Brunet, G.P. Bei, et al., Powder metallurgy processing and compressive properties of Ti3AlC2/Al composites, Mater. Sci. Eng. A, 530(2011), p. 168. doi: 10.1016/j.msea.2011.09.068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1690) PDF Downloads(163) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return