Qiangjian Gao, Guopeng Zhang, Haiyan Zheng, Xin Jiang, and Fengman Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 314-323. https://doi.org/10.1007/s12613-022-2432-5
Cite this article as:
Qiangjian Gao, Guopeng Zhang, Haiyan Zheng, Xin Jiang, and Fengman Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 314-323. https://doi.org/10.1007/s12613-022-2432-5
Research Article

Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO

+ Author Affiliations
  • Corresponding author:

    Qiangjian Gao    E-mail: gaoqiangjian@163.com

  • Received: 23 November 2021Revised: 26 January 2022Accepted: 29 January 2022Available online: 30 January 2022
  • Combustion performance of pulverized coal (PC) in blast furnace (BF) process is regarded as a criteria parameter to assess the proper injection dosage of PC. In this paper, effects of two kinds of additives, Fe2O3 and CaO, on PC combustion were studied using the thermo-gravimetric method. The results demonstrate that both the Fe2O3 and CaO can promote combustion performance index of PC including ignition index (Ci), burnout index (Db), as well as comprehensive combustibility index (Sn). The Sn increases from 1.37 × 10−6 to 2.16 × 10−6 %2·min−2·°C−3 as the Fe2O3 proportion increases from 0 to 5.0wt%. Additionally, the combustion kinetics of PC was clarified using the Coats-Redfern method. The results show that the activation energy (E) of PC combustion decreases after adding the above additives. For instance, the E decreases from 56.54 to 35.75 kJ/mol when the Fe2O3 proportion increases from 0 to 5.0wt%, which supports the improved combustion performance. Moreover, it is uneconomic to utilize pure Fe2O3 and CaO in production. Based on economy analysis, we selected the iron-bearing dust (IBD) which contains much Fe2O3 and CaO component to investigate, and got the same effects. Therefore, the IBD is a potential option for catalytic PC combustion in BF process.
  • loading
  • [1]
    Q.J. Gao, F.M. Shen, X. Jiang, G. Wei, and H.Y. Zheng, Gas-solid reduction kinetic model of MgO-fluxed pellets, Int. J. Miner. Metall. Mater., 21(2014), No. 1, p. 12. doi: 10.1007/s12613-014-0859-z
    [2]
    J.H. Liao, A.B. Yu, and Y.S. Shen, Modelling the injection of upgraded brown coals in an ironmaking blast furnace, Powder Technol., 314(2017), p. 550. doi: 10.1016/j.powtec.2016.11.005
    [3]
    F.M. Shen, Q.J. Gao, X. Jiang, G. Wei, and H.Y. Zheng, Effect of magnesia on the compressive strength of pellets, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 431. doi: 10.1007/s12613-014-0926-5
    [4]
    J.G. Mathieson, J.S. Truelove, and H. Rogers, Toward an understanding of coal combustion in blast furnace tuyere injection, Fuel, 84(2005), No. 10, p. 1229. doi: 10.1016/j.fuel.2004.06.036
    [5]
    L.Z. Jin and X.M. Niu, Micromorphology and safety properties of meager and meager-lean coal for blast furnace injection, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 774. doi: 10.1007/s12613-020-2104-2
    [6]
    D.L. Wu, P. Zhou, H.J. Yan, P.Y. Shi, and C.Q. Zhou, Numerical investigation of the effects of size segregation on pulverized coal combustion in a blast furnace, Powder Technol., 342(2019), p. 41. doi: 10.1016/j.powtec.2018.09.067
    [7]
    C. Wang, J.L. Zhang, G.W. Wang, K.X. Jiao, Z.J. Liu, and K.C. Chou, Combustion characteristics and kinetics of anthracite with added chlorine, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 745. doi: 10.1007/s12613-017-1458-6
    [8]
    Y.Q. Li, X.H. Zhang, J.Y. Zhang, J.M. Zhou, and H.J. Yan, Numerical simulation and optimization of pulverized coal injection with enriched oxygen into blast furnace, Appl. Therm. Eng., 67(2014), No. 1-2, p. 72. doi: 10.1016/j.applthermaleng.2014.02.062
    [9]
    D.W. Xiang, F.M. Shen, J.L. Yang, et al., Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 811. doi: 10.1007/s12613-019-1791-z
    [10]
    J.A. de Castro, G.D.M. Araújo, I.D.O. da Mota, Y. Sasaki, and J.I. Yagi, Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces, J. Mater. Res. Technol., 2(2013), No. 4, p. 308. doi: 10.1016/j.jmrt.2013.06.003
    [11]
    H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, and J.H. Zhang, Pore structure evolution during the coke graphitization process in a blast furnace, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1226. doi: 10.1007/s12613-019-1927-1
    [12]
    H.B. Jiang, J.L. Zhang, J.X. Fu, J. Chang, and J. Li, Properties and structural optimization of pulverized coal for blast furnace injection, J. Iron Steel Res. Int., 18(2011), No. 3, p. 6. doi: 10.1016/S1006-706X(11)60029-0
    [13]
    D.W. Xiang, F.M. Shen, X. Jiang, J.L. Yang, X.J. Li, and Q.J. Gao, Protective mechanism of unburned pulverized coal to coke in blast furnace, J. Min. Metall. Sect. B, 55(2019), No. 3, p. 371. doi: 10.2298/JMMB181229041X
    [14]
    J.H. Kim, R.G. Kim, G.B. Kim, and C.H. Jeon, Effect of coal fragmentation on PCI combustion zone in blast furnace, Exp. Therm. Fluid Sci., 79(2016), p. 266. doi: 10.1016/j.expthermflusci.2016.07.020
    [15]
    R.G. Kim, D.F. Li, and C.H. Jeon, Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate, Exp. Therm. Fluid Sci., 54(2014), p. 212. doi: 10.1016/j.expthermflusci.2013.12.017
    [16]
    R. Luo, Y.F. Zhang, N. Li, Q.L. Zhou, and P. Sun, Experimental study on flow and combustion characteristic of a novel swirling burner based on dual register structure for pulverized coal combustion, Exp. Therm. Fluid Sci., 54(2014), p. 136. doi: 10.1016/j.expthermflusci.2014.01.021
    [17]
    P. Dacombe, M. Pourkashanian, A. Williams, and L. Yap, Combustion-induced fragmentation behavior of isolated coal particles, Fuel, 78(1999), No. 15, p. 1847. doi: 10.1016/S0016-2361(99)00076-9
    [18]
    J. Friedemann, A. Wagner, A. Heinze, S. Krzack, and B. Meyer, Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor, Fuel, 166(2016), p. 382. doi: 10.1016/j.fuel.2015.11.007
    [19]
    S.H. Lee, S.D. Kim, and D.H. Lee, Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor, Fuel, 81(2002), No. 13, p. 1633. doi: 10.1016/S0016-2361(02)00094-7
    [20]
    Y.S. Shen, D. Maldonado, B.Y. Guo, A.B. Yu, P. Austin, and P. Zulli, Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway, Ind. Eng. Chem. Res., 48(2009), No. 23, p. 10314. doi: 10.1021/ie900853d
    [21]
    Y.S. Shen, B.Y. Guo, A.B. Yu, and P. Zulli, Model study of the effects of coal properties and blast conditions on pulverized coal combustion, ISIJ Int., 49(2009), No. 6, p. 819. doi: 10.2355/isijinternational.49.819
    [22]
    E. Abbasi-Atibeh and A. Yozgatligil, A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions, Fuel, 115(2014), p. 841. doi: 10.1016/j.fuel.2013.01.073
    [23]
    F. Shen, X. Peng, and Q. Zhao. The effect of MnO2 on the combustion-supporting efficiency of Pulverized coal and its mechanism, Iron Steel, 33(1998), No. 9, p. 1.
    [24]
    J.L. Zhang, G.W. Wang, J.G. Shao, Y.X. Chen, and T.J. Yang, Pulverized coal combustion of nitrogen free blast furnace, J. Iron Steel Res. Int., 20(2013), No. 3, p. 1. doi: 10.1016/S1006-706X(13)60061-8
    [25]
    X.G. Li, B.G. Ma, L. Xu, Z.T. Luo, and K. Wang, Catalytic effect of metallic oxides on combustion behavior of high ash coal, Energy Fuels, 21(2007), No. 5, p. 2669. doi: 10.1021/ef070054v
    [26]
    Z.Q. Wang, C. Hong, Y. Xing, Y.F. Li, L.H. Feng, and M.M. Jia, Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts, Waste Manage., 74(2018), p. 288. doi: 10.1016/j.wasman.2018.01.002
    [27]
    Y.H. Liu, D.F. Che, Y.T. Li, Effect of iron compounds on coal combustion characteristics, J. Xian Jiaotong Univ., 34(2000), No. 9, p. 20.
    [28]
    H. Liu, Q. Zhang, H.X. Xing, H.Y. Hu, A.J. Li, and H. Yao, Product distribution and sulfur behavior in sewage sludge pyrolysis: Synergistic effect of Fenton peroxidation and CaO conditioning, Fuel, 159(2015), p. 68. doi: 10.1016/j.fuel.2015.06.067
    [29]
    S.W. Fang, Z.S. Yu, Y. Lin, et al., Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis, Bioresour. Technol., 209(2016), p. 265. doi: 10.1016/j.biortech.2016.03.027
    [30]
    F.M. Shen, B. Sundelin, K. Paulsson, et al., Industrial practice of BiPCI process of pulverized coal injection for blast furnace ironmaking at SSAB, Steel Res. Int., 79(2008), No. 1, p. 11. doi: 10.1002/srin.200806310
    [31]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T212-2008: Proximate Analysis of Coal, Standards Press of China, Beijing, 2008.
    [32]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T213-2008: Determination of Calorific Value of Coal, Beijing, 2008.
    [33]
    R.L. Carr, Evaluating flow properties of solids, Chem. Eng. J., 72(1965), No. 2, p. 163.
    [34]
    X.G. Li, Y. Lv, B.G. Ma, S.W. Jian, and H.B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, Bioresour. Technol., 102(2011), No. 20, p. 9783. doi: 10.1016/j.biortech.2011.07.117
    [35]
    Y.S. Lin, X.Q. Ma, X.X. Ning, and Z.S. Yu, TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes, Energy Convers. Manage., 89(2015), p. 727. doi: 10.1016/j.enconman.2014.10.042
    [36]
    G.W. Wang, J.L. Zhang, J.G. Shao, et al., Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414. doi: 10.1016/j.enconman.2016.07.045
    [37]
    S.S.J. Warne, Thermal analysis and coal assessment: An overview with new developments, Thermochim. Acta, 272(1996), p. 1. doi: 10.1016/0040-6031(95)02459-X
    [38]
    G.R. Liu, H.J. Song, and J.H. Wu, Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis, Waste Manage., 41(2015), p. 128. doi: 10.1016/j.wasman.2015.03.042
    [39]
    K.B. Larionov, I.V. Mishakov, K.V. Slyusarskii, V.E. Gubin, and A.A. Vedyagin, Intensification of the oxidation of lignite and coal by an activating additive of Fe(NO3)2, Solid Fuel Chem., 53(2019), No. 5, p. 262. doi: 10.3103/S0361521919050070
    [40]
    C. Zou, L. Zhang, S.Y. Cao, and C.G. Zheng, A study of combustion characteristics of pulverized coal in O2/H2O atmosphere, Fuel, 115(2014), p. 312. doi: 10.1016/j.fuel.2013.07.025
    [41]
    Y.N. Bai, J.L. Zhang, B.X. Su, H.W. Guo, and B.J. Yan, Kinetics study of Fe2O3 catalyzing pulverized coal combustion, J. Iron Steel Res., 25(2013), No. 6, p. 8.
    [42]
    X.Z. Gong, Z.C. Guo, and Z. Wang, Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3, Combust. Flame, 157(2010), No. 2, p. 351. doi: 10.1016/j.combustflame.2009.06.025
    [43]
    C. Zou, L.Y. Wen, S.F. Zhang, C.G. Bai, and G.L. Yin, Evaluation of catalytic combustion of pulverized coal for use in pulverized coal injection (PCI) and its influence on properties of unburnt chars, Fuel Process. Technol., 119(2014), p. 136. doi: 10.1016/j.fuproc.2013.10.022
    [44]
    M.Y. Kou, H.B. Zuo, X.J. Ning, G.W. Wang, Z.B. Hong, H.F. Xu, and S.L. Wu, Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal, Energy, 188(2019), art. No. 116030. doi: 10.1016/j.energy.2019.116030
    [45]
    R.G. Guan, W. Li, and B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel, 82(2003), No. 15-17, p. 1961. doi: 10.1016/S0016-2361(03)00188-1
    [46]
    S. Cheng, Y.H. Wang, N.B. Gao, F. Takahashi, A.M. Li, and K. Yoshikawa, Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor, J. Anal. Appl. Pyrolysis, 120(2016), p. 511. doi: 10.1016/j.jaap.2016.06.024
    [47]
    X.X. Wu and L.R. Radovic, Catalytic oxidation of carbon/carbon composite materials in the presence of potassium and calcium acetates, Carbon, 43(2005), No. 2, p. 333. doi: 10.1016/j.carbon.2004.09.025
    [48]
    Z.G. Zhang, T. Kyotani, and A. Tomita, Dynamic behavior of surface oxygen complexes during oxygen-chemisorption and subsequent temperature-programmed desorption of calcium-loaded coal chars, Energy Fuels, 3(1989), No. 5, p. 566. doi: 10.1021/ef00017a006
    [49]
    J.X. Zhang, S.X. Liu, F.S. Niu, and Z.S. Xu, Reviews on the comprehensive utilization of metallurgical dust from iron and steel plant, Appl. Mech. Mater., 295-298(2013), p. 3075. doi: 10.4028/www.scientific.net/AMM.295-298.3075
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(864) PDF Downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return