Guangming Xie, Ruihai Duan, Yuqian Wang, Zong’an Luo, and Guodong Wang, Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 724-733. https://doi.org/10.1007/s12613-022-2434-3
Cite this article as:
Guangming Xie, Ruihai Duan, Yuqian Wang, Zong’an Luo, and Guodong Wang, Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 724-733. https://doi.org/10.1007/s12613-022-2434-3
Research Article

Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating

+ Author Affiliations
  • Corresponding author:

    Guangming Xie    E-mail: xiegm@ral.neu.edu.cn

  • Received: 2 December 2021Revised: 30 January 2022Accepted: 7 February 2022Available online: 9 February 2022
  • Fusion welding easily causes microstructural coarsening in the heat-affected zone (HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ (ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding (FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding (GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone (NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.
  • loading
  • [1]
    Y.P. Zeng, P.Y. Zhu, and K. Tong, Effect of microstructure on the low temperature toughness of high strength pipeline steels, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 254. doi: 10.1007/s12613-015-1069-z
    [2]
    J.B. Ju, W.S. Kim, and J.I. Jang, Variations in DBTT and CTOD within weld heat-affected zone of API X65 pipeline steel, Mater. Sci. Eng. A, 546(2012), p. 258. doi: 10.1016/j.msea.2012.03.062
    [3]
    S.H. Hashemi and D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel, Int. J. Press. Vessels Pip., 98(2012), p. 8. doi: 10.1016/j.ijpvp.2012.05.011
    [4]
    R.H. Duan, G.M. Xie, P. Xue, et al., Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding, J. Mater. Sci. Technol., 93(2021), p. 221. doi: 10.1016/j.jmst.2021.04.008
    [5]
    Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel, Mater. Sci. Eng. A, 605(2014), p. 8. doi: 10.1016/j.msea.2014.03.034
    [6]
    X.N. Qi, H.S. Di, X.N. Wang, et al., Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints, J. Mater. Res. Technol., 9(2020), No. 4, p. 7838. doi: 10.1016/j.jmrt.2020.05.016
    [7]
    H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294. doi: 10.1007/s12613-018-1682-8
    [8]
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34(2018), No. 1, p. 39. doi: 10.1016/j.jmst.2017.10.024
    [9]
    L.Y. Huang, K.S. Wang, W. Wang, et al., Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202. doi: 10.1007/s12613-019-1725-9
    [10]
    P. Xue, B.L. Xiao, W.G. Wang, et al., Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel, Mater. Sci. Eng. A, 575(2013), p. 30. doi: 10.1016/j.msea.2013.03.033
    [11]
    A. Behjat, M. Shamanian, M. Atapour, and M.A. Sarmadi, Microstructure and corrosion properties of friction stir-welded high-strength low-alloy steel, Trans. Indian Inst. Met., 74(2021), No. 7, p. 1763. doi: 10.1007/s12666-021-02219-4
    [12]
    R.H. Duan, G.M. Xie, Z.A. Luo, et al., Microstructure, crystallography, and toughness in nugget zone of friction stir welded high-strength pipeline steel, Mater. Sci. Eng. A, 791(2020), art. No. 139620. doi: 10.1016/j.msea.2020.139620
    [13]
    A. Tribe and T.W. Nelson, Study on the fracture toughness of friction stir welded API X80, Eng. Fract. Mech., 150(2015), p. 58. doi: 10.1016/j.engfracmech.2015.10.006
    [14]
    Y.F. Sun, H. Fujii, and Y. Morisada, Double-sided friction stir welding of 40 mm thick low carbon steel plates using a pcBN rotating tool, J. Manuf. Process., 50(2020), p. 319. doi: 10.1016/j.jmapro.2019.12.043
    [15]
    H. Aydin and T.W. Nelson, Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input, Mater. Sci. Eng. A, 586(2013), p. 313. doi: 10.1016/j.msea.2013.07.090
    [16]
    J.A. Avila, J. Rodriguez, P.R. Mei, and A.J. Ramirez, Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates, Mater. Sci. Eng. A, 673(2016), p. 257. doi: 10.1016/j.msea.2016.07.045
    [17]
    J.A. Ávila, C.O.F.T. Ruchert, P.R. Mei, et al., Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates, Eng. Fract. Mech., 147(2015), p. 176. doi: 10.1016/j.engfracmech.2015.08.006
    [18]
    X.D. Li, C.J. Shang, X.P. Ma, et al., Structure and crystallography of martensite–austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel, Mater. Charact., 138(2018), p. 107. doi: 10.1016/j.matchar.2018.01.042
    [19]
    G.M. Xie, R.H. Duan, P. Xue, et al., Microstructure and mechanical properties of X80 pipeline steel joints by friction stir welding under various cooling conditions, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 88. doi: 10.1007/s40195-019-00940-0
    [20]
    X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, and C.J. Shang, Influence of Martensite–Austenite constituents formed at different intercritical temperatures on toughness, Mater. Des., 67(2015), p. 457. doi: 10.1016/j.matdes.2014.10.028
    [21]
    X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, and R.D.K. Misra, Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel, Mater. Sci. Eng. A, 616(2014), p. 141. doi: 10.1016/j.msea.2014.07.100
    [22]
    X.J. Di, M. Tong, C.N. Li, C. Zhao, and D.P. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A, 743(2019), p. 67. doi: 10.1016/j.msea.2018.11.070
    [23]
    A. Lambert, A. Lambert, J. Drillet, et al., Microstructure of martensite-austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties, Sci. Technol. Weld. Joining, 5(2000), No. 3, p. 168. doi: 10.1179/136217100101538164
    [24]
    G.M. Xie, H.B. Cui, Z.A. Luo, R.D.K. Misra, and G.D. Wang, Asymmetric distribution of microstructure and impact toughness in stir zone during friction stir processed a high strength pipeline steel, Mater. Sci. Eng. A, 704(2017), p. 401. doi: 10.1016/j.msea.2017.08.008
    [25]
    X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Mater. Sci. Eng. A, 710(2018), p. 192. doi: 10.1016/j.msea.2017.10.079
    [26]
    L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 529(2011), p. 192. doi: 10.1016/j.msea.2011.09.017
    [27]
    J.W. Morris Jr, Stronger, tougher steels, Science, 320(2008), No. 5879, p. 1022. doi: 10.1126/science.1158994
    [28]
    P A. Manohar, M. Ferry, and T. Chandra, Recrystallization of ferrite and austenite, [in] Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
    [29]
    H.B. Cui, G.M. Xie, Z.A. Luo, et al., The microstructural evolution and impact toughness of nugget zone in friction stir welded X100 pipeline steel, J. Alloys Compd., 681(2016), p. 426. doi: 10.1016/j.jallcom.2016.03.299
    [30]
    H.F. Lan, L.X. du, and R.D.K. Misra, Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel, Mater. Sci. Eng. A, 611(2014), p. 194. doi: 10.1016/j.msea.2014.05.084
    [31]
    G.M. Xie, R.H. Duan, Y.Q. Wang, et al., Crystallography of the nugget zone of bainitic steel by friction stir welding in various cooling mediums, Mater. Charact., 182(2021), art. No. 111523. doi: 10.1016/j.matchar.2021.111523
    [32]
    X.Y. Xu, J.Z. Li, W.J. Li, et al., Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum, Mater. Des., 180(2019), art. No. 107924. doi: 10.1016/j.matdes.2019.107924
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(441) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return