Cite this article as: |
Quankuang Zhang, Baozhong Ma, Chengyan Wang, Yongqiang Chen, and Wenjuan Zhang, Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 857-867. https://doi.org/10.1007/s12613-022-2436-1 |
Baozhong Ma E-mail: bzhma_ustb@yeah.net
Chengyan Wang E-mail: chywang@yeah.net
Supplementary Information-s12613-022-2436-1.docx |
[1] |
L.O. Quarrie, The effects of atomic rubidium vapor on the performance of optical windows in diode pumped alkali lasers (DPALs), Opt. Mater., 35(2013), No. 5, p. 843. doi: 10.1016/j.optmat.2012.10.040
|
[2] |
S.S. Losev, D.I. Sevostianov, V.V. Vassiliev, and V.L. Velishansky, Production of miniature glass cells with rubidium for chip scale atomic clock, Phys. Procedia, 71(2015), p. 242. doi: 10.1016/j.phpro.2015.08.357
|
[3] |
P.C. Harikesh, H.K. Mulmudi, B. Ghosh, et al., Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics, Chem. Mater., 28(2016), No. 20, p. 7496. doi: 10.1021/acs.chemmater.6b03310
|
[4] |
S. Wang, R.X. Ma, C.Y. Wang, S.N. Li, and H. Wang, Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology, Mater. Lett., 202(2017), p. 36. doi: 10.1016/j.matlet.2017.05.079
|
[5] |
M. Saliba, T. Matsui, K. Domanski, et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354(2016), No. 6309, p. 206. doi: 10.1126/science.aah5557
|
[6] |
L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
|
[7] |
N. Vieceli, C.A. Nogueira, M.F.C. Pereira, et al., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1. doi: 10.1016/j.mineng.2016.12.001
|
[8] |
H. Guo, G. Kuang, J.X. Yang, and S. Hu, Fundamental research on a new process to remove Al3+ as potassium alum during lithium extraction from lepidolite, Metall. Mater. Trans. B, 47(2016), No. 6, p. 3557. doi: 10.1007/s11663-016-0774-y
|
[9] |
Z.Q. Shan, X.Q. Shu, J.F. Feng, and W.N. Zhou, Modified calcination conditions of rare alkali metal Rb-containing muscovite (KAl2[AlSi3O10](OH)2), Rare Met., 32(2013), No. 6, p. 632. doi: 10.1007/s12598-013-0068-3
|
[10] |
M.R. Tavakoli Mohammadi, S.M. Javad Koleini, S. Javanshir, H. Abolghasemi, and M. Abdollahy, Extraction of rubidium from gold waste: Process optimization, Hydrometallurgy, 151(2015), p. 25. doi: 10.1016/j.hydromet.2014.10.016
|
[11] |
X.H. Guo, M.P. Zheng, X.F. Liu, Z. Nie, and L. Pu, Saline cesium resource and prospect of its exploitation and utilization in Tibet, J. Salt .Chem. Ind., 37(2008), p. 24.
|
[12] |
T. Nur, G. Naidu, P. Loganathan, J. Kandasamy, and S. Vigneswaran, Rubidium recovery using potassium cobalt hexacyanoferrate sorbent, Desalin. Water Treat., 57(2016), No. 55, p. 26577. doi: 10.1080/19443994.2016.1185383
|
[13] |
Y.S. Liao and D.J. Yang, Application status of rubidium resource and research situation of its extraction technology, Yunnan Metall., 41(2012), No. 4, p. 27.
|
[14] |
G. Naidu, P. Loganathan, S. Jeong, et al., Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent, Chem. Eng. J., 306(2016), p. 31. doi: 10.1016/j.cej.2016.07.038
|
[15] |
M.S. Safarzadeh, M.S. Moats, and J.D. Miller, Acid bake-leach process for the treatment of enargite concentrates, Hydrometallurgy, 119-120(2012), p. 30. doi: 10.1016/j.hydromet.2012.03.002
|
[16] |
P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, and H. Deveci, Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process, J. Ind. Eng. Chem., 43(2016), p. 117. doi: 10.1016/j.jiec.2016.07.056
|
[17] |
S.L. Zheng, P. Li, L. Tian, et al., A chlorination roasting process to extract rubidium from distinctive Kaolin ore with alternative chlorinating reagent, Int. J. Miner. Process., 157(2016), p. 21. doi: 10.1016/j.minpro.2016.09.006
|
[18] |
Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1. doi: 10.1016/j.minpro.2012.03.005
|
[19] |
C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
|
[20] |
P. Xing, C.Y. Wang, B.Z. Ma, L. Wang, W.J. Zhang, and Y.Q. Chen, Rubidium and potassium extraction from granitic rubidium ore: Process optimization and mechanism study, ACS Sustainable Chem. Eng., 6(2018), No. 4, p. 4922. doi: 10.1021/acssuschemeng.7b04445
|
[21] |
Q. Zeng, S.Z. Li, W. Sun, L. Hu, H. Zhong, and Z.G. He, Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues, J. Cleaner Prod., 306(2021), art. No. 127167. doi: 10.1016/j.jclepro.2021.127167
|
[22] |
H. Xu and J.S.J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surf. A, 216(2003), No. 1-3, p. 27. doi: 10.1016/S0927-7757(02)00499-5
|
[23] |
B.E. Kalinowski and P. Schweda, Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature, Geochim. Cosmochim. Acta, 60(1996), No. 3, p. 367. doi: 10.1016/0016-7037(95)00411-4
|
[24] |
D. Ciceri, M. de Oliveira, R.M. Stokes, T. Skorina, and A. Allanore, Characterization of potassium agrominerals: Correlations between petrographic features, comminution and leaching of ultrapotassic syenites, Miner. Eng., 102(2017), p. 42. doi: 10.1016/j.mineng.2016.11.016
|
[25] |
K.H. Park, H.I. Kim, P.K. Parhi, et al., Extraction of metals from Mo–Ni/Al2O3 spent catalyst using H2SO4 baking-leaching-solvent extraction technique, J. Ind. Eng. Chem., 18(2012), No. 6, p. 2036. doi: 10.1016/j.jiec.2012.05.024
|
[26] |
Y.M. Chen, N.N. Liu, L.G. Ye, S. Xiong, and S.H. Yang, A cleaning process for the removal and stabilisation of arsenic from arsenic-rich lead anode slime, J. Cleaner Prod., 176(2018), p. 26. doi: 10.1016/j.jclepro.2017.12.121
|
[27] |
Z. Luo, J. Yang, H.W. Ma, M.T. Liu, and X. Ma, Recovery of magnesium and potassium from biotite by sulfuric acid leaching and alkali precipitation with ammonia, Hydrometallurgy, 157(2015), p. 188. doi: 10.1016/j.hydromet.2015.08.018
|
[28] |
N. Harouiya and E.H. Oelkers, An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates, Chem. Geol., 205(2004), No. 1-2, p. 155. doi: 10.1016/j.chemgeo.2004.01.005
|
[29] |
S. Nisan, F. Laffore, C. Poletiko, and N. Simon, Extraction of rubidium from the concentrated brine rejected by integrated nuclear desalination systems, Desalin. Water Treat., 8(2009), No. 1-3, p. 236. doi: 10.5004/dwt.2009.666
|
[30] |
Q. Zeng, L.M. Huang, D.X. Ouyang, Y.H. Hu, H. Zhong, and Z.G. He, Process optimization on the extraction of rubidium from rubidium-bearing biotite, Miner. Eng., 137(2019), p. 87. doi: 10.1016/j.mineng.2019.03.020
|
[31] |
Y.W. Lv, P. Xing, B.Z. Ma, et al., Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation, ACS Sustainable Chem. Eng., 8(2020), No. 38, p. 14462. doi: 10.1021/acssuschemeng.0c04437
|
[32] |
P. Xing, C.Y. Wang, L. Zeng, et al., Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9498. doi: 10.1021/acssuschemeng.9b00923
|
[33] |
G. Martin, C. Pätzold, and M. Bertau, Integrated process for lithium recovery from zinnwaldite, Int. J. Miner. Process., 160(2017), p. 8. doi: 10.1016/j.minpro.2017.01.005
|
[34] |
X. Ma, J. Yang, H.W. Ma, and C.J. Liu, Hydrothermal extraction of potassium from potassic quartz syenite and preparation of aluminum hydroxide, Int. J. Miner. Process., 147(2016), p. 10. doi: 10.1016/j.minpro.2015.12.007
|
[35] |
Z.Q. Zhang and R.Z. Yuan, Study on dehydroxylation process of kaolinite and its structural change, Bull. Chin. Ceram. Soc., 1993, No. 6, p. 37. doi: 10.16552/j.cnki.issn1001-1625.1993.06.009
|
[36] |
S.Q. Su, H.W. Ma, and X.Y. Chuan, Hydrothermal decomposition of K-feldspar in KOH–NaOH–H2O medium, Hydrometallurgy, 156(2015), p. 47. doi: 10.1016/j.hydromet.2015.05.014
|
[37] |
M.K. Naskar, D. Kundu, and M. Chatterjee, Effect of process parameters on surfactant-based synthesis of hydroxy sodalite particles, Mater. Lett., 65(2011), No. 3, p. 436. doi: 10.1016/j.matlet.2010.11.008
|
[38] |
N.N. Xue, Y.M. Zhang, T. Liu, J. Huang, and Q.S. Zheng, Effects of hydration and hardening of calcium sulfate on muscovite dissolution during pressure acid leaching of black shale, J. Cleaner Prod., 149(2017), p. 989. doi: 10.1016/j.jclepro.2017.02.152
|
[39] |
N. Vieceli, F.O. Durão, C. Guimarães, C.A. Nogueira, M.F.C. Pereira, and F. Margarido, Kinetic approach to the study of froth flotation applied to a lepidolite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 731. doi: 10.1007/s12613-016-1287-z
|
[40] |
H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review, Hydrometallurgy, 189(2019), art. No. 105129. doi: 10.1016/j.hydromet.2019.105129
|
[41] |
P. Xing, C.Y. Wang, L. Wang, B.Z. Ma, Y.Q. Chen, and G.D. Wang, Clean and efficient process for the extraction of rubidium from granitic rubidium ore, J. Cleaner Prod., 196(2018), p. 64. doi: 10.1016/j.jclepro.2018.06.041
|
[42] |
L.M. Zeng and Z.B. Li, Solubility and modeling of sodium aluminosilicate in NaOH–NaAl(OH)4 solutions and its application to desilication, Ind. Eng. Chem. Res., 51(2012), No. 46, p. 15193. doi: 10.1021/ie301590r
|
[43] |
L.N. Shi, S. Ruan, J. Li, and A.R. Gerson, Desilication of low alumina to caustic liquor seeded with sodalite or cancrinite, Hydrometallurgy, 170(2017), p. 5. doi: 10.1016/j.hydromet.2016.06.023
|
[44] |
X.D. Liu, Y.P. Wang, X.M. Cui, Y. He, and J. Mao, Influence of synthesis parameters on NaA zeolite crystals, Powder Technol., 243(2013), p. 184. doi: 10.1016/j.powtec.2013.03.048
|
[45] |
P. Xing, C.Y. Wang, B.Z. Ma, and Y.Q. Chen, Removal of Pb(II) from aqueous solution using a new zeolite-type absorbent: Potassium ore leaching residue, J. Environ. Chem. Eng., 6(2018), No. 6, p. 7138. doi: 10.1016/j.jece.2018.11.003
|
[46] |
L.L. Bai, K.X. Li, Y.B. Yan, X.L. Jia, J.M. Lee, and Y.H. Yang, Catalytic epoxidation of cis-cyclooctene over vanadium-exchanged faujasite zeolite catalyst with ionic liquid as cosolvent, ACS Sustainable Chem. Eng., 4(2016), No. 2, p. 437. doi: 10.1021/acssuschemeng.5b00854
|
[47] |
H. Jin, J.L. Zhang, D.D. Wang, Q.K. Jing, Y.Q. Chen, and C.Y. Wang, Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature, Green Chem., 24(2022), No. 1, p. 152. doi: 10.1039/D1GC03333F
|
[48] |
D. Hu, B.Z. Ma, X. Li, et al., Efficient separation and recovery of gallium and indium in spent CIGS materials, Sep. Purif. Technol., 282(2022), art. No. 120087. doi: 10.1016/j.seppur.2021.120087
|