Minjie Shi, Hangtian Zhu, Cong Chen, Jintian Jiang, Liping Zhao, and Chao Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 25-32. https://doi.org/10.1007/s12613-022-2441-4
Cite this article as:
Minjie Shi, Hangtian Zhu, Cong Chen, Jintian Jiang, Liping Zhao, and Chao Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 25-32. https://doi.org/10.1007/s12613-022-2441-4
Research Article

Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Minjie Shi    E-mail: shiminjie@just.edu.cn

    Chao Yan    E-mail: chaoyan@just.edu.cn

  • Received: 1 December 2021Revised: 16 February 2022Accepted: 18 February 2022Available online: 23 February 2022
  • Cost-effective, safe, and highly performing energy storage devices require rechargeable batteries, and among various options, aqueous zinc-ion batteries (ZIBs) have shown high promise in this regard. As a cathode material for the aqueous ZIBs, manganese dioxide (MnO2) has been found to be promising, but certain drawbacks of this cathode material are slow charge-transfer capability and poor cycling performance. Herein, a novel design of graphene quantum dots (GQDs) integrated with Zn-intercalated MnO2 nanosheets is put forward to construct a 3D nanoflower-like GQDs@ZnxMnO2 composite cathode for aqueous ZIBs. The synergistic coupling of GQDs modification with Zn intercalation provides abundant active sites and conductive medium to facilitate the ion/electron transmission, as well as ensure the GQDs@ZnxMnO2 composite cathode with enhanced charge-transfer capability and high electrochemical reversibility, which are elucidated by experiment results and in-situ Raman investigation. These impressive properties endow the GQDs@ZnxMnO2 composite cathode with superior aqueous Zn2+ storage capacity (~403.6 mAh·g−1), excellent electrochemical kinetics, and good structural stability. For actual applications, the fabricated aqueous ZIBs can deliver a substantial energy density (226.8 W·h·kg−1), a remarkable power density (650 W·kg−1), and long-term cycle performance, further stimulating their potential application as efficient electrochemical storage devices for various energy-related fields.
  • loading
  • Supplementary InformationsIJM-12-2021-1134.docx
  • [1]
    F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, and C.S. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17(2018), No. 6, p. 543. doi: 10.1038/s41563-018-0063-z
    [2]
    G.J. Liang, F.N. Mo, X.L. Ji, and C.Y. Zhi, Non-metallic charge carriers for aqueous batteries, Nat. Rev. Mater., 6(2021), No. 2, p. 109. doi: 10.1038/s41578-020-00241-4
    [3]
    Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, and J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun., 11(2020), art. No. 2199. doi: 10.1038/s41467-020-16039-5
    [4]
    J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, and Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods, 3(2019), No. 1, art. No. 1800272. doi: 10.1002/smtd.201800272
    [5]
    X.H. Qin, Y.H. Du, P.C. Zhang, X.Y. Wang, Q.Q. Lu, A.K. Yang, and J.C. Sun, Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684. doi: 10.1007/s12613-021-2312-4
    [6]
    B.Y. Tang, L.T. Shan, S.Q. Liang, and J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12(2019), No. 11, p. 3288. doi: 10.1039/C9EE02526J
    [7]
    X. Gao, H.W. Wu, W.J. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G.Q. Zou, H.S. Hou, and X.B. Ji, H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842. doi: 10.1002/smll.201905842
    [8]
    B.K. Wu, G.B. Zhang, M.Y. Yan, T.F. Xiong, P. He, L. He, X. Xu, and L.Q. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery, Small, 14(2018), No. 13, art. No. 1703850. doi: 10.1002/smll.201703850
    [9]
    M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
    [10]
    G.G. Yadav, D. Turney, J.C. Huang, X. Wei, and S. Banerjee, Breaking the 2 V barrier in aqueous zinc chemistry: Creating 2.45 and 2.8 V MnO2–Zn aqueous batteries, ACS Energy Lett., 4(2019), No. 9, p. 2144. doi: 10.1021/acsenergylett.9b01643
    [11]
    D.L. Chao, W.H. Zhou, C. Ye, Q.H. Zhang, Y.G. Chen, L. Gu, K. Davey, and S.Z. Qiao, An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58(2019), No. 23, p. 7823. doi: 10.1002/anie.201904174
    [12]
    Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, and F. Pan, Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects, Adv. Mater., 32(2020), No. 50, art. No. 2002450. doi: 10.1002/adma.202002450
    [13]
    H.Z. Zhang, Q.Y. Liu, J. Wang, K.F. Chen, D.F. Xue, J. Liu, and X.H. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation, J. Mater. Chem. A, 7(2019), No. 38, p. 22079. doi: 10.1039/C9TA08418E
    [14]
    Y. Zhao, B. Wang, M.J. Shi, S.B. An, L.P. Zhao, and C. Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1954. doi: 10.1007/s12613-021-2346-7
    [15]
    W.W. Liu, M. Li, G.P. Jiang, G.R. Li, J.B. Zhu, M.L. Xiao, Y.F. Zhu, R. Gao, A.P. Yu, M. Feng, and Z.W. Chen, Graphene quantum dots-based advanced electrode materials: Design, synthesis and their applications in electrochemical energy storage and electrocatalysis, Adv. Energy Mater., 10(2020), No. 29, art. No. 2001275. doi: 10.1002/aenm.202001275
    [16]
    S. Bak, D. Kim, and H. Lee, Graphene quantum dots and their possible energy applications: A review, Curr. Appl. Phys., 16(2016), No. 9, p. 1192. doi: 10.1016/j.cap.2016.03.026
    [17]
    N. Zahir, P. Magri, W. Luo, J.J. Gaumet, and P. Pierrat, Recent advances on graphene quantum dots for electrochemical energy storage devices, Energy Environ. Mater., 5(2022), No. 1, p. 201. doi: 10.1002/eem2.12167
    [18]
    Q.W. Liu, J.H. Sun, K. Gao, N. Chen, X.T. Sun, D. Ti, C.C. Bai, R.R. Cui, and L.T. Qu, Graphene quantum dots for energy storage and conversion: From fabrication to applications, Mater. Chem. Front., 4(2020), No. 2, p. 421. doi: 10.1039/C9QM00553F
    [19]
    Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
    [20]
    W.Y. Zhang, Y.N. Yang, R.Q. Xia, Y.C. Li, J.Q. Zhao, L. Lin, J.M. Cao, Q.H. Wang, Y. Liu, and H.W. Guo, Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors, Carbon, 162(2020), p. 114. doi: 10.1016/j.carbon.2020.02.039
    [21]
    H.P. Lv, Y. Yuan, Q.J. Xu, H.M. Liu, Y.G. Wang, and Y.Y. Xia, Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor, J. Power Sources, 398(2018), p. 167. doi: 10.1016/j.jpowsour.2018.07.059
    [22]
    G.Z. Li, Z.X. Huang, J.B. Chen, F. Yao, J.P. Liu, O.L. Li, S.H. Sun, and Z.C. Shi, Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials, J. Mater. Chem. A, 8(2020), No. 4, p. 1975. doi: 10.1039/C9TA11985J
    [23]
    J. Xu, K.X. Hou, Z.W. Ju, C.J. Ma, W.C. Wang, C. Wang, J.Y. Cao, and Z.D. Chen, Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications, J. Electrochem. Soc., 164(2017), No. 2, p. A430. doi: 10.1149/2.1241702jes
    [24]
    V.H. Nguyen, L.T.N. Huynh, T.H. Nguyen, T.P. Vu, M.L.P. le, A. Grag, and V.M. Tran, Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries, J. Appl. Electrochem., 48(2018), No. 7, p. 793. doi: 10.1007/s10800-018-1196-0
    [25]
    G.X. Liu, H.W. Huang, R. Bi, X. Xiao, T.Y. Ma, and L. Zhang, K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries, J. Mater. Chem. A, 7(2019), No. 36, p. 20806. doi: 10.1039/C9TA08049J
    [26]
    X.L. Zeng, B. Li, R.Q. Liu, X. Li, and T.L. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system, Chem. Eng. J., 384(2020), art. No. 123362. doi: 10.1016/j.cej.2019.123362
    [27]
    H.N. Jia, Y.F. Cai, J.H. Lin, H.Y. Liang, J.L. Qi, J. Cao, J.C. Feng, and W.D. Fei, Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors, Adv. Sci., 5(2018), No. 5, art. No. 1700887. doi: 10.1002/advs.201700887
    [28]
    J.J. Wang, J.G. Wang, H.Y. Liu, C.G. Wei, and F.Y. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries, J. Mater. Chem. A, 7(2019), No. 22, p. 13727. doi: 10.1039/C9TA03541A
    [29]
    Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z.A. Liu, L. Zhou, J. Wang, and L.Q. Mai, Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density, Small, 16(2020), No. 14, art. No. 2000091. doi: 10.1002/smll.202000091
    [30]
    C. Chen, M.J. Shi, Y. Zhao, C. Yang, L.P. Zhao, and C. Yan, Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries, Chem. Eng. J., 422(2021), art. No. 130375. doi: 10.1016/j.cej.2021.130375
    [31]
    J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519. doi: 10.1016/j.nanoen.2020.104519
    [32]
    F. Liu, Z.X. Chen, G.Z. Fang, Z.Q. Wang, Y.S. Cai, B.Y. Tang, J. Zhou, and S.Q. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode, Nano-micro Lett., 11(2019), No. 1, art. No. 25. doi: 10.1007/s40820-019-0256-2
    [33]
    C. Guo, H.M. Liu, J.F. Li, Z.G. Hou, J.W. Liang, J. Zhou, Y.C. Zhu, and Y.T. Qian, Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery, Electrochim. Acta, 304(2019), p. 370. doi: 10.1016/j.electacta.2019.03.008
    [34]
    L.F. Yang, S. Cheng, J.H. Wang, X. Ji, Y. Jiang, M.H. Yao, P. Wu, M.K. Wang, J. Zhou, and M.L. Liu, Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy, Nano Energy, 30(2016), p. 293. doi: 10.1016/j.nanoen.2016.10.018
    [35]
    Q.N. Zhang, M.D. Levi, Q.Y. Dou, Y.L. Lu, Y.G. Chai, S.L. Lei, H.X. Ji, B. Liu, X.D. Bu, P.J. Ma, and X.B. Yan, The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802707. doi: 10.1002/aenm.201802707
    [36]
    S. Boyd, K. Ganeshan, W.Y. Tsai, T. Wu, S. Saeed, D.E. Jiang, N. Balke, A.C.T. van Duin, and V. Augustyn, Effects of interlayer confinement and hydration on capacitive charge storage in birnessite, Nat. Mater., 20(2021), No. 12, p. 1689. doi: 10.1038/s41563-021-01066-4
    [37]
    L.Y. Liu, L.J. Su, Y.L. Lu, Q.N. Zhang, L. Zhang, S.L. Lei, S.Q. Shi, M.D. Levi, and X.B. Yan, The origin of electrochemical actuation of MnO2/Ni bilayer film derived by redox pseudocapacitive process, Adv. Funct. Mater., 29(2019), No. 8, art. No. 1806778. doi: 10.1002/adfm.201806778
    [38]
    C. Wang, Y.X. Zeng, X. Xiao, S.J. Wu, G.B. Zhong, K.Q. Xu, Z.F. Wei, W. Su, and X.H. Lu, γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery, J. Energy Chem., 43(2020), p. 182. doi: 10.1016/j.jechem.2019.08.011
    [39]
    M.J. Shi, H.T. Zhu, C. Yang, J. Xu, and C. Yan, Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors, Chin. J. Chem. Eng., 47(2022), p. 1. doi: 10.1016/j.cjche.2021.05.045
    [40]
    X.H. Wang, T.S. Mathis, K. Li, Z.F. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes, Nat. Energy, 4(2019), No. 3, p. 241. doi: 10.1038/s41560-019-0339-9
    [41]
    L. Zhang, X.H. Zhang, G.Y. Tian, Q.H. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z.X. Shen, G.C. Yang, L. Gu, and F. Du, Lithium lanthanum titanate perovskite as an anode for lithium ion batteries, Nat. Commun., 11(2020), art. No. 3490. doi: 10.1038/s41467-020-17233-1
    [42]
    R.Y. Wang, M.J. Shi, L.Y. Li, Y. Zhao, L.P. Zhao, and C. Yan, In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries, Chem. Eng. J., 451(2023), art. No. 138652. doi: 10.1016/j.cej.2022.138652
    [43]
    R. Ahmad, U.A. Khan, N. Iqbal, and T. Noor, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview, RSC Adv., 10(2020), No. 71, p. 43733. doi: 10.1039/D0RA08560J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(724) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return