Wenjing Yan, Jintao Zhang, Aijing Lü, Songle Lu, Yiwei Zhong,  and Mingyong Wang, Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1120-1131. https://doi.org/10.1007/s12613-022-2443-2
Cite this article as:
Wenjing Yan, Jintao Zhang, Aijing Lü, Songle Lu, Yiwei Zhong,  and Mingyong Wang, Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1120-1131. https://doi.org/10.1007/s12613-022-2443-2
Research Article

Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting

+ Author Affiliations
  • Corresponding authors:

    Yiwei Zhong    E-mail: ywzhong@ustb.edu.cn

    Mingyong Wang    E-mail: mywang@ustb.edu.cn

  • Received: 11 December 2021Revised: 28 January 2022Accepted: 21 February 2022Available online: 23 February 2022
  • Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by renewable energy. Herein, a novel self-supporting hierarchically porous NixFe–S/NiFe2O4 heterostructure as bifunctional electrocatalyst was constructed based on porous Ni–Fe electrodeposition on three-dimensional (3D) carbon fiber cloth, in situ oxidation, and chemical sulfuration. Results showed that the NixFe–S/NiFe2O4 heterostructure with a large specific surface area exhibits good bifunctional activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) because of the abundance of active sites, synergistic effect of the heterostructure, superhydrophilic surface, and stable, self-supporting structure. The results further confirmed that the NixFe–S phase in the heterostructure is transformed into metal oxides/hydroxides and Ni3S2 during OER. Compared with the commercial 20wt% Pt/C||IrO2–Ta2O5 electrolyzer, the self-supporting Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4 electrolyzer exhibits better stability and lower cell voltage in the fluctuating current density range of 10–500 mA/cm2. Particularly, the cell voltage of Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4 is only approximately 3.91 V at an industrial current density of 500 mA/cm2, which is lower than that of the 20wt% Pt/C||IrO2–Ta2O5 electrolyzer (i.e., approximately 4.79 V). This work provides a promising strategy to develop excellent bifunctional electrocatalysts for fluctuating overall water splitting.
  • loading
  • Supplementary Informations10.1007s12613-022-2443-2.doc
  • [1]
    X.S. Wang, Y. Zheng, W.C. Sheng, Z.J. Xu, M. Jaroniec, and S.Z. Qiao, Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions, Mater. Today, 36(2020), p. 125. doi: 10.1016/j.mattod.2019.12.003
    [2]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [3]
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2017), No. 2, p. 337. doi: 10.1039/C6CS00328A
    [4]
    M. Wang, L. Zhang, Y.J. He, and H.W. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting, J. Mater. Chem. A, 9(2021), No. 9, p. 5320. doi: 10.1039/D0TA12152E
    [5]
    K. Srinivas, Y.F. Chen, B. Wang, B. Yu, Y.J. Lu, Z. Su, W.L. Zhang, and D.X. Yang, Metal–organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heteronanoparticle-decorated carbon nanotube network as a highly efficient and durable bifunctional electrocatalyst, ACS Appl. Mater. Interfaces, 12(2020), No. 50, p. 55782. doi: 10.1021/acsami.0c13836
    [6]
    Z.L. Chen, H.L. Qing, R.R. Wang, and R.B. Wu, Charge pumping enabling Co–NC to outperform benchmark Pt catalyst for pH-universal hydrogen evolution reaction, Energy Environ. Sci., 14(2021), No. 5, p. 3160. doi: 10.1039/D1EE00052G
    [7]
    B. Liu, S. Wang, C.Y. Wang, B.Z. Ma, and Y.Q. Chen, Electrochemical behavior and corrosion resistance of IrO2–ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 264. doi: 10.1007/s12613-019-1847-0
    [8]
    K. Srinivas, Y.J. Lu, Y.F. Chen, W.L. Zhang, and D.X. Yang, FeNi3–Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting, ACS Sustainable Chem. Eng., 8(2020), No. 9, p. 3820. doi: 10.1021/acssuschemeng.9b07182
    [9]
    Z.F. Huang, S.B. Xi, J.J. Song, S. Dou, X.G. Li, Y.H. Du, C.Z. Diao, Z.C.J. Xu, and X. Wang, Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst, Nat. Commun., 12(2021), art. No. 3992. doi: 10.1038/s41467-021-24182-w
    [10]
    L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
    [11]
    M. Karpuraranjith, Y.F. Chen, B. Wang, J. Ramkumar, D.X. Yang, K. Srinivas, W. Wang, W.L. Zhang, and R. Manigandan, Hierarchical ultrathin layered MoS2@NiFe2O4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation, J. Colloid Interface Sci., 592(2021), p. 385. doi: 10.1016/j.jcis.2021.02.062
    [12]
    K. Srinivas, Y.F. Chen, X.Q. Wang, B. Wang, M. Karpuraranjith, W. Wang, Z. Su, W.L. Zhang, and D.X. Yang, Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis, ACS Sustain. Chem. Eng., 9(2021), No. 4, p. 1920. doi: 10.1021/acssuschemeng.0c08543
    [13]
    X. Chen, X.Q. Wang, X.J. Zhang, K. Srinivas, D.W. Liu, X.C. Zhao, H.S. Yu, B. Wang, W.L. Zhang, and Y.F. Chen, Vertical Fe(OH)3/Ni9S8 nanoarrays electrodeposited on stainless steel as binder-free electrocatalyst for highly efficient and stable oxygen evolution reaction, J. Mater. Sci., 56(2021), No. 34, p. 19144. doi: 10.1007/s10853-021-06460-6
    [14]
    B. Wang, Y.F. Chen, X.Q. Wang, J. Ramkumar, X.J. Zhang, B. Yu, D.X. Yang, M. Karpuraranjith, and W.L. Zhang, rGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation, J. Mater. Chem. A, 8(2020), No. 27, p. 13558. doi: 10.1039/D0TA04383D
    [15]
    F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddard, S. Chen, and Z.F. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun., 9(2018), p. 2551. doi: 10.1038/s41467-018-04746-z
    [16]
    Y. Xiao, Y. Pei, Y.F. Hu, R.G. Ma, D.Y. Wang, and J.C. Wang, Co2P@P-doped 3D porous carbon for bifunctional oxygen electrocatalysis, Acta Phys. Chim. Sin., 37(2021), No. 7, art. No. 2009051. doi: 10.3866/PKU.WHXB202009051
    [17]
    J.Z. Huang, J.C. Han, T. Wu, K. Feng, T. Yao, X.J. Wang, S.W. Liu, J. Zhong, Z.H. Zhang, Y.M. Zhang, and B. Song, Boosting hydrogen transfer during Volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution, ACS Energy Lett., 4(2019), No. 12, p. 3002. doi: 10.1021/acsenergylett.9b02359
    [18]
    S. Anantharaj, S. Kundu, and S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts, Nano Energy, 80(2021), p. 105514. doi: 10.1016/j.nanoen.2020.105514
    [19]
    X.J. Zhang, Y.F. Chen, M.L. Chen, B. Yu, B. Wang, X.Q. Wang, W.L. Zhang, and D.X. Yang, MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction, J. Colloid Interface Sci., 581(2021), p. 608. doi: 10.1016/j.jcis.2020.07.117
    [20]
    K. Sun, Y.Q. Zhao, J. Yin, J. Jin, H.W. Liu, and P.X. Xi, Surface modification of NiCo2O4 nanowires using organic ligands for overall water splitting, Acta Phys. Chim. Sin., 38(2022), No. 6, pp. 2107005-2107005. doi: 10.3866/PKU.WHXB202107005
    [21]
    J.F. Zhang, Y. Jiang, Y. Wang, C.P. Yu, J.W. Cui, J.J. Wu, X. Shu, Y.Q. Qin, J. Sun, J. Yan, H.M. Zheng, Y. Zhang, and Y.C. Wu, Ultrathin carbon coated mesoporous Ni–NiFe2O4 nanosheet arrays for efficient overall water splitting, Electrochim. Acta, 321(2019), p. 134652. doi: 10.1016/j.electacta.2019.134652
    [22]
    M. Wang, L. Zhang, J.L. Pan, M.R. Huang, and H.W. Zhu, A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting, Nano Res., 14(2021), No. 12, p. 4740. doi: 10.1007/s12274-021-3416-5
    [23]
    H. Su, S.J. Song, S.S. Li, Y.Q. Gao, L. Ge, W.Y. Song, T.Y. Ma, and J. Liu, High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting, Appl. Catal. B Environ., 293(2021), art. No. 120225. doi: 10.1016/j.apcatb.2021.120225
    [24]
    R.Z. Zhang, Z.Q. Zhu, J.H. Lin, K.F. Zhang, N. Li, and C.J. Zhao, Hydrolysis assisted in situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting, Electrochim. Acta, 332(2020), p. 135534. doi: 10.1016/j.electacta.2019.135534
    [25]
    H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 32(2020), No. 3, p. 1806326. doi: 10.1002/adma.201806326
    [26]
    H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran, C. Spöri, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, S. Piccinin, J. Pérez-Ramírez, B.R. Cuenya, R. Schlögl, P. Strasser, D. Teschner, and T.E. Jones, Key role of chemistry versus bias in electrocatalytic oxygen evolution, Nature, 589(2021), p. 408. doi: 10.1038/s41586-020-2887-3
    [27]
    J.T. Li, D. Chu, H. Dong, D.R. Baker, and R.Z. Jiang, Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides, J. Am. Chem. Soc., 142(2020), No. 1, p. 50. doi: 10.1021/jacs.9b10882
    [28]
    L. Lv, Y.X. Chang, X. Ao, Z.S. Li, J.G. Li, Y. Wu, X.Y. Xue, Y.L. Cao, G. Hong, and C.D. Wang, Interfacial electron transfer on heterostructured Ni3Se4/FeOOH endows highly efficient water oxidation in alkaline solutions, Mater. Today Energy, 17(2020), p. 100462. doi: 10.1016/j.mtener.2020.100462
    [29]
    X.T. Yu, M.Y. Wang, X.Z. Gong, Z.C. Guo, Z. Wang, and S.Q. Jiao, Self-supporting porous CoP-based films with phase-separation structure for ultrastable overall water electrolysis at large current density, Adv. Energy Mater., 8(2018), No. 34, p. 1802445. doi: 10.1002/aenm.201802445
    [30]
    C. Andronescu, S. Barwe, E. Ventosa, J. Masa, E. Vasile, B. Konkena, S. Möller, and W. Schuhmann, Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts, Angew. Chem. Int. Ed., 56(2017), No. 37, p. 11258. doi: 10.1002/anie.201705385
    [31]
    T.Z. Wu, X. Ren, Y.M. Sun, S.N. Sun, G.Y. Xian, G.G. Scherer, A.C. Fisher, D. Mandler, J.W. Ager, A. Grimaud, J.L. Wang, C.M. Shen, H.T. Yang, J. Gracia, H.J. Gao, and Z.J. Xu, Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation, Nat. Commun., 12(2021), No. 1, p. 3634. doi: 10.1038/s41467-021-23896-1
    [32]
    Y.F. Zhao, H. Zhou, X.R. Zhu, Y.T. Qu, C. Xiong, Z.G. Xue, Q.W. Zhang, X.K. Liu, F.Y. Zhou, X.M. Mou, W.Y. Wang, M. Chen, Y. Xiong, X.G. Lin, Y. Lin, W.X. Chen, H.J. Wang, Z. Jiang, L.R. Zheng, T. Yao, J.C. Dong, S.Q. Wei, W.X. Huang, L. Gu, J. Luo, Y.F. Li, and Y.E. Wu, Simultaneous oxidative and reductive reactions in one system by atomic design, Nat. Catal., 4(2021), No. 2, p. 134. doi: 10.1038/s41929-020-00563-0
    [33]
    S. Park, K. Jin, H.K. Lim, J. Kim, K.H. Cho, S. Choi, H. Seo, M.Y. Lee, Y.H. Lee, S. Yoon, M. Kim, H. Kim, S.H. Kim, and K.T. Nam, Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni–Mn3O4 nanoparticles during water oxidation catalysis, Nat. Commun., 11(2020), No. 1, p. 5230. doi: 10.1038/s41467-020-19133-w
    [34]
    S.F. Zai, X.Y. Gao, C.C. Yang, and Q. Jiang, Ce-modified Ni(OH)2 nanoflowers supported on NiSe2 octahedra nanoparticles as high-efficient oxygen evolution electrocatalyst, Adv. Energy Mater., 11(2021), No. 28, art. No. 2101266. doi: 10.1002/aenm.202101266
    [35]
    L. Trotochaud, S.L. Young, J.K. Ranney, and S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation, J. Am. Chem. Soc., 136(2014), No. 18, p. 6744. doi: 10.1021/ja502379c
    [36]
    B.H. Park, M. Kim, N.K. Park, H.J. Ryu, J.I. Baek, and M. Kang, Single layered hollow NiO–NiS catalyst with large specific surface area and highly efficient visible-light-driven carbon dioxide conversion, Chemosphere, 280(2021), p. 130759. doi: 10.1016/j.chemosphere.2021.130759
    [37]
    G.Y. Zhou, Y. Chen, H. Dong, L. Xu, X.E. Liu, C.W. Ge, D.M. Sun, and Y.W. Tang, Ultrafine monodisperse NiS/NiS2 heteronanoparticles in situ grown on N-doped graphene nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction, Int. J. Hydrog. Energy, 44(2019), No. 48, p. 26338. doi: 10.1016/j.ijhydene.2019.08.127
    [38]
    L.A. Marusak and L.N. Mulay, Mössbauer and magnetic study of the antiferro to ferrimagnetic phase transition in Fe9S10 and the magnetokinetics of the diffusion of iron atoms during the transition, J. Appl. Phys., 50(1979), No. B3, p. 1865. doi: 10.1063/1.327147
    [39]
    Z.Y. Wang, J.T. Li, X.C. Tian, X.P. Wang, Y. Yu, K.A. Owusu, L. He, and L.Q. Mai, Porous nickel–iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction, ACS Appl. Mater. Interfaces, 8(2016), No. 30, p. 19386. doi: 10.1021/acsami.6b03392
    [40]
    H.W. Nesbitt, D. Legrand, and G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators, Phys. Chem. Miner., 27(2000), No. 5, p. 357. doi: 10.1007/s002690050265
    [41]
    X.R. Zheng, X.P. Han, Y.Q. Zhang, J.H. Wang, C. Zhong, Y.D. Deng, and W.B. Hu, Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting, Nanoscale, 11(2019), No. 12, p. 5646. doi: 10.1039/C8NR09902B
    [42]
    Y.J. Li, H.C. Zhang, M. Jiang, Q. Zhang, P.L. He, and X.M. Sun, 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting, Adv. Funct. Mater., 27(2017), No. 37, art. No. 1702513. doi: 10.1002/adfm.201702513
    [43]
    I. Uhlig, R. Szargan, H.W. Nesbitt, and K. Laajalehto, Surface states and reactivity of pyrite and marcasite, Appl. Surf. Sci., 179(2001), No. 1-4, p. 222. doi: 10.1016/S0169-4332(01)00283-5
    [44]
    T. Dickinson, A.F. Povey, and P.M.A. Sherwood, Dissolution and passivation of nickel. an X-ray photoelectron spectroscopic study, J. Chem. Soc.,Faraday Trans. 1, 73(1977), p. 327.
    [45]
    S.Q. Zhao, S.J. Guo, C. Zhu, J. Gao, H. Li, H. Huang, Y. Liu, and Z.H. Kang, Achieving electroreduction of CO2 to CH3OH with high selectivity using a pyrite–nickel sulfide nanocomposite, RSC Adv., 7(2017), No. 3, p. 1376. doi: 10.1039/C6RA26868D
    [46]
    Y. Tang, C.H. Yang, Y.W. Yang, X.T. Yin, W.X. Que, and J.F. Zhu, Three dimensional hierarchical network structure of S–NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution, Electrochim. Acta, 296(2019), p. 762. doi: 10.1016/j.electacta.2018.11.083
    [47]
    G.X. Zhuang, Y.W. Chen, Z.Y. Zhuang, Y. Yu, and J.G. Yu, Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design, Sci. China Mater., 63(2020), No. 11, p. 2089. doi: 10.1007/s40843-020-1305-6
    [48]
    D.X. Yang, Z. Su, Y.F. Chen, K. Srinivas, X.J. Zhang, W.L. Zhang, and H.P. Lin, Self-reconstruction of a MOF-derived chromium-doped nickel disulfide in electrocatalytic water oxidation, Chem. Eng. J., 430(2022), art. No. 133046. doi: 10.1016/j.cej.2021.133046
    [49]
    K. Song, W.T. Li, R. Yang, Y.J. Zheng, X.S. Chen, X. Wang, G.L. Chen, and W.C. Lv, Controlled preparation of Ni(OH)2/NiS nanosheet heterostructure as hybrid supercapacitor electrodes for high electrochemical performance, Electrochim. Acta, 388(2021), p. 138663. doi: 10.1016/j.electacta.2021.138663
    [50]
    D.X. Yang, Z. Su, Y.F. Chen, Y.J. Lu, B. Yu, K. Srinivas, B. Wang, and W.L. Zhang, Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis, J. Mater. Chem. A, 8(2020), No. 42, p. 22222. doi: 10.1039/D0TA06766K
    [51]
    O. Diaz-Morales, I. Ledezma-Yanez, M.T.M. Koper, and F. Calle-Vallejo, Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction, ACS Catal., 5(2015), No. 9, p. 5380. doi: 10.1021/acscatal.5b01638
    [52]
    M.Y. Wang, X.T. Yu, Z. Wang, X.Z. Gong, Z.C. Guo, and L. Dai, Hierarchically 3D porous films electrochemically constructed on gas–liquid–solid three-phase interface for energy application, J. Mater. Chem. A, 5(2017), No. 20, p. 9488. doi: 10.1039/C7TA02519J
    [53]
    S. Intikhab, J.D. Snyder, and M.H. Tang, Adsorbed hydroxide does not participate in the Volmer step of alkaline hydrogen electrocatalysis, ACS Catal., 7(2017), No. 12, p. 8314. doi: 10.1021/acscatal.7b02787
    [54]
    B. Dong, X. Zhao, G.Q. Han, X. Li, X. Shang, Y.R. Liu, W.H. Hu, Y.M. Chai, H. Zhao, and C.G. Liu, Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A, 4(2016), No. 35, p. 13499. doi: 10.1039/C6TA03177C
    [55]
    G. Liu, K.F. Wang, X.S. Gao, D.Y. He, and J.P. Li, Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting, Electrochim. Acta, 211(2016), p. 871. doi: 10.1016/j.electacta.2016.06.113
    [56]
    X. Shi, Y.F. Li, S.L. Bernasek, and A. Selloni, Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor, Surf. Sci., 640(2015), p. 73. doi: 10.1016/j.susc.2015.03.012
    [57]
    S.H. Ahn, I. Choi, H.Y. Park, S.J. Hwang, S.J. Yoo, E. Cho, H.J. Kim, D. Henkensmeier, S.W. Nam, S.K. Kim, and J.H. Jang, Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis, Chem. Commun., 49(2013), No. 81, p. 9323. doi: 10.1039/c3cc44891f
    [58]
    N. Mahmood, Y.D. Yao, J.W. Zhang, L. Pan, X.W. Zhang, and J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions, Adv. Sci., 5(2018), No. 2, p. 1700464. doi: 10.1002/advs.201700464
    [59]
    Y. Zheng, Y. Jiao, A. Vasileff, and S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts, Angew. Chem. Int. Ed., 57(2018), No. 26, p. 7568. doi: 10.1002/anie.201710556
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(1982) PDF Downloads(113) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return