Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang, and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1073-1089. https://doi.org/10.1007/s12613-022-2449-9
Cite this article as:
Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang, and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1073-1089. https://doi.org/10.1007/s12613-022-2449-9
Invited Review

Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

+ Author Affiliations
  • Corresponding authors:

    Xuan Liu    E-mail: xuanliu@ustb.edu.cn

    Qingfeng Li    E-mail: qfli@dtu.dk

  • Received: 20 January 2022Revised: 22 February 2022Accepted: 28 February 2022Available online: 1 March 2022
  • Energy storage and conversion via a hydrogen chain is a recognized vision of future energy systems based on renewables and, therefore, a key to bridging the technological gap toward a net-zero CO2 emission society. This paper reviews the hydrogen technological chain in the framework of renewables, including water electrolysis, hydrogen storage, and fuel cell technologies. Water electrolysis is an energy conversion technology that can be scalable in megawatts and operational in a dynamic mode to match the intermittent generation of renewable power. Material concerns include a robust diaphragm for alkaline cells, catalysts and construction materials for proton exchange membrane (PEM) cells, and validation of the long-term durability for solid oxide cells. Hydrogen storage via compressed gas up to 70 MPa is optional for automobile applications. Fuel cells favor hydrogen fuel because of its superfast electrode kinetics. PEM fuel cells and solid oxide fuel cells are dominating technologies for automobile and stationary applications, respectively. Both technologies are at the threshold of their commercial markets with verified technical readiness and environmental merits; however, they still face restraints such as unavailable hydrogen fueling infrastructure, long-term durability, and costs to compete with the analog power technologies already on the market.
  • loading
  • [1]
    Intergovermental Panel on Climate Change (IPCC), Sixth Assessment Report, IPCC, Geneva, 2021 [2021-12-03]. https://www.ipcc.ch/assessment-report/ar6/
    [2]
    T. Lockwood, A compararitive review of next-generation carbon capture technologies for coal-fired power plant, Energy Procedia, 114(2017), p. 2658. doi: 10.1016/j.egypro.2017.03.1850
    [3]
    P. Millet and S. Grigoriev, Water electrolysis technologies, [in] L.M. Gandía, G. Arzamendi, and P.M. Diéguez, eds., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Elsevier, Amsterdam, 2013, p. 19.
    [4]
    J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, L. Zeng, X. Wang, and Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev., 49(2020), No. 7, p. 2196. doi: 10.1039/C9CS00607A
    [5]
    M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
    [6]
    I. Vincent and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable Sustainable Energy Rev., 81(2018), p. 1690. doi: 10.1016/j.rser.2017.05.258
    [7]
    Q. Feng, X.Z. Yuan, G.Y. Liu, B. Wei, Z. Zhang, H. Li, and H.J. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366(2017), p. 33. doi: 10.1016/j.jpowsour.2017.09.006
    [8]
    L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, and E. Standen, Study on Development of Water Electrolysis in the EU, Fuel Cells and Hydrogen Joint Undertaking, 2014 [2021-05-10]. https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf
    [9]
    C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, and Q. Jiang, Fe3C-co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER, Adv. Funct. Mater., 29(2019), No. 27, art. No. 1901949.
    [10]
    X.X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44(2015), No. 15, p. 5148. doi: 10.1039/C4CS00448E
    [11]
    L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
    [12]
    M. Lehner, R. Tichler, H. Steinmüller, and M. Koppe, Power-to-Gas: Technology and Business Models, Springer, New York, 2014.
    [13]
    B. Decourt, B. Lajoie, R. Debarre, and O. Soupa, Hydrogen-based Energy Conversion. More than Storage: System Flexibility, SBC Energy Institute, Paris, 2014.
    [14]
    M.Y. Wang, Z. Wang, X.Z. Gong, and Z.C. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable Sustainable Energy Rev., 29(2014), p. 573. doi: 10.1016/j.rser.2013.08.090
    [15]
    M.R. Kraglund, D. Aili, K. Jankova, E. Christensen, Q.F. Li, and J.O. Jensen, Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations, J. Electrochem. Soc., 163(2016), No. 11, p. F3125. doi: 10.1149/2.0161611jes
    [16]
    W.E. Mustain and P.A. Kohl, Improving alkaline ionomers, Nat. Energy, 5(2020), No. 5, p. 359. doi: 10.1038/s41560-020-0619-4
    [17]
    C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
    [18]
    U. Babic, M. Suermann, F.N. Büchi, L. Gubler, and T.J. Schmidt, Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development, J. Electrochem. Soc., 164(2017), No. 4, p. F387. doi: 10.1149/2.1441704jes
    [19]
    L.G. Li, P.T. Wang, Q. Shao, and X.Q. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev., 49(2020), No. 10, p. 3072. doi: 10.1039/D0CS00013B
    [20]
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2017), No. 2, p. 337. doi: 10.1039/C6CS00328A
    [21]
    A. Hauch, S.D. Ebbesen, S.H. Jensen, and M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem., 18(2008), No. 20, art. No. 2331. doi: 10.1039/b718822f
    [22]
    M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, 203(2012), p. 4. doi: 10.1016/j.jpowsour.2011.12.019
    [23]
    K.F. Chen and S.P. Jiang, Review—Materials degradation of solid oxide electrolysis cells, J. Electrochem. Soc., 163(2016), No. 11, p. F3070. doi: 10.1149/2.0101611jes
    [24]
    P. Moçoteguy and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, Int. J. Hydrogen Energy, 38(2013), No. 36, p. 15887. doi: 10.1016/j.ijhydene.2013.09.045
    [25]
    A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, 100(2012), No. 2, p. 410. doi: 10.1109/JPROC.2011.2156750
    [26]
    N.T. Stetson, S. McWhorter, and C.C. Ahn, Introduction to hydrogen storage, [in] R.B. Gupta, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 3.
    [27]
    E.W. Lemmon, M.O. McLinden, and D.G. Friend, Thermophysical properties of fluid systems, [in] P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry Webbook, NIST Standard Reference Database, Vol. 69, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
    [28]
    N. Stetson and M. Wieliczko, Hydrogen technologies for energy storage: A perspective, MRS Energy Sustainability, 7(2020), No. 1, art. No. 41. doi: 10.1557/mre.2020.43
    [29]
    S. McWhorter and G. Ordaz, Onboard Type IV Compressed Hydrogen Storage Systems – Current Performance and Cost, DOE Fuel Cell Technologies Office, 2013 [2021-10-24]. https://www.hydrogen.energy.gov/pdfs/13010_onboard_storage_performance_cost.pdf
    [30]
    NPROXX, Stationary Hydrogen Storage Applications [2021-11-10]. https://www.nproxx.com/hydrogen-storage-transport/stationary-applications/
    [31]
    Hexagon, Hydrogen Storage and Distribution – Lightweight High-Pressure Systems for Hydrogen Storage & Distribution [2021-06-05]. https://hexagongroup.com/solutions/storage-distribution/hydrogen/
    [32]
    Composite Advanced Technologies, LLC, Highway to Hydrogen [2021-12-01]. https://www.catecgases.com/hydrogen
    [33]
    NPROXX, Hydrogen Storage for Filling Stations [2021-11-13]. https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/
    [34]
    K.L. Simmons, Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks, DOE Hydrogen and Fuel Cells Program, 2014 [2021-10-20]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_f_3_simmons_2014.pdf
    [35]
    A.S. Lord, P.H. Kobos, and D.J. Borns, Geologic storage of hydrogen: Scaling up to meet city transportation demands, Int. J. Hydrogen Energy, 39(2014), No. 28, p. 15570. doi: 10.1016/j.ijhydene.2014.07.121
    [36]
    J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.S. Schneider, T. Pregger, K.K. Cao, and D. Heide, Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition, Int. J. Hydrogen Energy, 42(2017), No. 19, p. 13427. doi: 10.1016/j.ijhydene.2017.02.102
    [37]
    R. K. Ahluwalia, J.K. Peng, H.S. Roh, and D. Papadias, System Analysis of Physical and Materials-Based Hydrogen Storage, DOE Hydrogen and Fuel Cells Program, 2019 [2021-09-10]. https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf
    [38]
    R.R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, and V. Balakotaiah, Hydrogen supply chain and challenges in large-scale LH2 storage and transportation, Int. J. Hydrogen Energy, 46(2021), No. 47, p. 24149. doi: 10.1016/j.ijhydene.2021.05.025
    [39]
    V. Tietze, S. Luhr, and D. Stolten, Bulk storage vessels for compressed and liquid hydrogen, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 659.
    [40]
    J. Andersson and S. Grönkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(2019), No. 23, p. 11901. doi: 10.1016/j.ijhydene.2019.03.063
    [41]
    G. Valenti, Hydrogen liquefaction and liquid hydrogen storage, [in] Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambridge, 2016, p. 27.
    [42]
    A. Züttel, Hydrogen storage methods, Naturwissenschaften, 91(2004), No. 4, p. 157. doi: 10.1007/s00114-004-0516-x
    [43]
    J.B. von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, and M. Dornheim, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7780. doi: 10.1016/j.ijhydene.2019.01.104
    [44]
    C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, and M. Baricco, Complex hydrides for energy storage, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7860. doi: 10.1016/j.ijhydene.2018.11.208
    [45]
    M. Hirscher, V.A. Yartys, M. Baricco, J.B. von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J.C. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E.M. Gray, B.C. Hauback, T. He, T.D. Humphries, T.R. Jensen, S. Kim, Y. Kojima, M. Latroche, H.W. Li, M.V. Lototskyy, J.W. Makepeace, K.T. Møller, L. Naheed, P. Ngene, D. Noréus, M.M. Nygård, S.I. Orimo, M. Paskevicius, L. Pasquini, D.B. Ravnsbæk, M.V. Sofianos, T.J. Udovic, T. Vegge, G.S. Walker, C.J. Webb, C. Weidenthaler, and C. Zlotea, Materials for hydrogen-based energy storage – Past, recent progress and future outlook, J. Alloys Compd., 827(2020), art. No. 153548. doi: 10.1016/j.jallcom.2019.153548
    [46]
    Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [47]
    T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059. doi: 10.1038/natrevmats.2016.59
    [48]
    A. Bourane, M. Elanany, T.V. Pham, and S.P. Katikaneni, An overview of organic liquid phase hydrogen carriers, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23075. doi: 10.1016/j.ijhydene.2016.07.167
    [49]
    S. Bradley and W. Wilczewski, Power-to-gas brings a new focus to the issue of energy storage from renewable sources, Today in Energy, 2015 [2021-11-21]. https://www.eia.gov/todayinenergy/detail.php?id=22212#
    [50]
    FIBA Technologies, Superjumbo Tube Trailers, FIBA Technologies, Inc, Littleton [2021-12-09]. https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/
    [51]
    P. Schnell, Refueling station layout, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 891.
    [52]
    R. Gerboni, Introduction to hydrogen transportation, [in] R.B. Gupta, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 283.
    [53]
    R.C. Samsun, L. Antoni, M. Rex, and D. Stolten, Deployment Status of Fuel Cells in Road Transport: 2021 Update, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2021.
    [54]
    D. Apostolou and G. Xydis, A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects, Renewable Sustainable Energy Rev., 113(2019), art. No. 109292. doi: 10.1016/j.rser.2019.109292
    [55]
    S. Chubbock and R. Clague, Comparative analysis of internal combustion engine and fuel cell range extender, SAE Int. J. Alt. Power., 5(2016), No. 1, p. 175. doi: 10.4271/2016-01-1188
    [56]
    A. Elgowainy and M.Q. Wang, Fuel Cycle Comparison of Distributed Power Generation Technologies, Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, 2008 [2021-11-02]. https://www.osti.gov/biblio/946042-qtnABP/
    [57]
    Y.J. Wang, J.L. Qiao, R. Baker, and J.J. Zhang, Alkaline polymer electrolyte membranes for fuel cell applications, Chem. Soc. Rev., 42(2013), No. 13, p. 5768. doi: 10.1039/c3cs60053j
    [58]
    J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, and L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci., 7(2014), No. 10, p. 3135. doi: 10.1039/C4EE01303D
    [59]
    Q.F. Li, D. Aili, H.A. Hjuler, and J.O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives, Springer, Cham, 2016.
    [60]
    L.X. Fan, Z.K. Tu, and S.H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep., 7(2021), p. 8421. doi: 10.1016/j.egyr.2021.08.003
    [61]
    M. Cassir, A. Meléndez-Ceballos, A. Ringuedé, and V. Lair, Molten carbonate fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 71.
    [62]
    A.S. Mehr, A. Lanzini, M. Santarelli, and M.A. Rosen, Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches, Energy, 228(2021), art. No. 120613. doi: 10.1016/j.energy.2021.120613
    [63]
    M. Singh, D. Zappa, and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46(2021), No. 54, p. 27643. doi: 10.1016/j.ijhydene.2021.06.020
    [64]
    B.S. Prakash, S.S. Kumar, and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renewable Sustainable Energy Rev., 36(2014), p. 149. doi: 10.1016/j.rser.2014.04.043
    [65]
    Z. Zakaria, Z. Awang Mat, S.H. Abu Hassan, and Y. Boon Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, Int. J. Energy Res., 44(2020), No. 2, p. 594. doi: 10.1002/er.4907
    [66]
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72(2015), p. 141. doi: 10.1016/j.pmatsci.2015.01.001
    [67]
    R.K. Mallick, S.B. Thombre, and N.K. Shrivastava, Vapor feed direct methanol fuel cells (DMFCs): A review, Renewable Sustainable Energy Rev., 56(2016), p. 51. doi: 10.1016/j.rser.2015.11.039
    [68]
    B.G. Pollet, A.A. Franco, H. Su, H. Liang, and S. Pasupathi, Proton exchange membrane fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 3.
    [69]
    L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, and J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Pet. Sci., (2021). https://doi.org/10.1016/j.petsci.2021.11.004
    [70]
    D. Van Dao, G. Adilbish, I.H. Lee, and Y.T. Yu, Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC, Int. J. Hydrogen Energy, 44(2019), No. 45, p. 24580. doi: 10.1016/j.ijhydene.2019.07.156
    [71]
    E. Middelman, Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bull., 2002(2002), No. 11, p. 9. doi: 10.1016/S1464-2859(02)11028-5
    [72]
    J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, and A.M. Kannan, Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell, Electrochim. Acta, 55(2010), No. 8, p. 2746. doi: 10.1016/j.electacta.2009.12.056
    [73]
    K. Panagi, C.J. Laycock, J.P. Reed, and A.J. Guwy, Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology, Appl. Energy, 255(2019), art. No. 113854. doi: 10.1016/j.apenergy.2019.113854
    [74]
    M. Choolaei, Q. Cai, R.C.T. Slade, and B. Amini Horri, Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method, Ceram. Int., 44(2018), No. 11, p. 13286. doi: 10.1016/j.ceramint.2018.04.159
    [75]
    M.Z. Ahmad, S.H. Ahmad, R.S. Chen, A.F. Ismail, R. Hazan, and N.A. Baharuddin, Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrogen Energy, 47(2022), No. 2, p. 1103. doi: 10.1016/j.ijhydene.2021.10.094
    [76]
    C. Xia, Y. Li, Y. Tian, Q.H. Liu, Z.M. Wang, L.J. Jia, Y.C. Zhao, and Y.D. Li, Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte, J. Power Sources, 195(2010), No. 10, p. 3149. doi: 10.1016/j.jpowsour.2009.11.104
    [77]
    A. Ahuja, M. Gautam, A. Sinha, J. Sharma, P.K. Patro, and A. Venkatasubramanian, Effect of processing route on the properties of LSCF-based composite cathode for IT-SOFC, Bull. Mater. Sci., 43(2020), No. 1, art. No. 129. doi: 10.1007/s12034-020-2075-y
    [78]
    E.D. Wachsman and K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334(2011), No. 6058, p. 935. doi: 10.1126/science.1204090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(3905) PDF Downloads(284) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return