Rui Gao, Zhenyu Wang, Sheng Liu, Guangjie Shao,  and Xueping Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 990-1002. https://doi.org/10.1007/s12613-022-2451-2
Cite this article as:
Rui Gao, Zhenyu Wang, Sheng Liu, Guangjie Shao,  and Xueping Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 990-1002. https://doi.org/10.1007/s12613-022-2451-2
Invited Review

Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries

+ Author Affiliations
  • Corresponding authors:

    Guangjie Shao    E-mail: shaogj@ysu.edu.cn

    Xueping Gao    E-mail: xpgao@nankai.edu.cn

  • Received: 20 January 2022Revised: 19 February 2022Accepted: 1 March 2022Available online: 2 March 2022
  • Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of 2600 W·h·kg−1. However, their commercialization is limited by poor cycle stability mainly due to the low intrinsic electrical conductivity of sulfur and its discharged products (Li2S2/Li2S), the sluggish reaction kinetics of sulfur cathode, and the “shuttle effect” of soluble intermediate lithium polysulfides in ether-based electrolyte. To address these challenges, catalytic hosts have recently been introduced in sulfur cathodes to enhance the conversion of soluble polysulfides to the final solid products and thus prevent the dissolution and loss of active-sulfur material. In this review, we summarize the recent progress on the use of metal phosphides and borides of different dimensions as the catalytic host of sulfur cathodes and demonstrate the catalytic conversion mechanism of sulfur cathodes with the help of metal phosphides and borides for high-energy and long-life lithium–sulfur batteries. Finally, future outlooks are proposed on developing advanced catalytic host materials to improve battery performance.
  • loading
  • [1]
    Y.X. Lu, X.H. Rong, Y.S. Hu, L.Q. Chen, and H. Li, Research and development of advanced battery materials in China, Energy Storage Mater., 23(2019), p. 144. doi: 10.1016/j.ensm.2019.05.019
    [2]
    M.A. Pope and I.A. Aksay, Structural design of cathodes for Li–S batteries, Adv. Energy Mater., 5(2015), No. 16, art. No. 1500124. doi: 10.1002/aenm.201500124
    [3]
    P.J. Zuo, J.F. Hua, M.X. He, H. Zhang, Z.Y. Qian, Y.L. Ma, C.Y. Du, X.Q. Cheng, Y.Z. Gao, and G.P. Yin, Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries, J. Mater. Chem. A, 5(2017), No. 22, p. 10936. doi: 10.1039/C7TA02245J
    [4]
    W.J. Deng, J. Phung, G. Li, and X.L. Wang, Realizing high-performance lithium–sulfur batteries via rational design and engineering strategies, Nano Energy, 82(2021), art. No. 105761. doi: 10.1016/j.nanoen.2021.105761
    [5]
    C. Deng, Z.W. Wang, S.P. Wang, and J.X. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: Mechanism and improvement strategies, J. Mater. Chem. A, 7(2019), No. 20, p. 12381. doi: 10.1039/C9TA00535H
    [6]
    F. He, X.J. Wu, J.F. Qian, Y.L. Cao, H.X. Yang, X.P. Ai, and D.G. Xia, Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism, J. Mater. Chem. A, 6(2018), No. 46, p. 23396. doi: 10.1039/C8TA08159J
    [7]
    P. Chen, Z. Wu, T. Guo, Y. Zhou, M.L. Liu, X.F. Xia, J.W. Sun, L.D. Lu, X.P. Ouyang, X. Wang, Y.S. Fu, and J.W. Zhu, Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium–sulfur batteries with enhanced safety and electrochemical performance, Adv. Mater., 33(2021), No. 9, art. No. 2007549. doi: 10.1002/adma.202007549
    [8]
    P. Wang, B.J. Xi, M. Huang, W.H. Chen, J.K. Feng, and S.L. Xiong, Emerging catalysts to promote kinetics of lithium–sulfur batteries, Adv. Energy Mater., 11(2021), No. 7, art. No. 2002893. doi: 10.1002/aenm.202002893
    [9]
    Y.J. Li, J.M. Fan, M.S. Zheng, and Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries, Energy Environ. Sci., 9(2016), No. 6, p. 1998. doi: 10.1039/C6EE00104A
    [10]
    S.H. Chung, C.H. Chang, and A. Manthiram, Progress on the critical parameters for lithium–sulfur batteries to be practically viable, Adv. Funct. Mater., 28(2018), No. 28, art. No. 1801188. doi: 10.1002/adfm.201801188
    [11]
    D.H. Liu, C. Zhang, G.M. Zhou, W. Lv, G.W. Ling, L.J. Zhi, and Q.H. Yang, Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect, Adv. Sci., 5(2018), No. 1, art. No. 1700270. doi: 10.1002/advs.201700270
    [12]
    W.J. Chen, B.Q. Li, C.X. Zhao, M. Zhao, T.Q. Yuan, R.C. Sun, J.Q. Huang, and Q. Zhang, Electrolyte regulation towards stable lithium–metal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes, Angew. Chem. Int. Ed., 59(2020), No. 27, p. 10732. doi: 10.1002/anie.201912701
    [13]
    K. Mahankali, S. Nagarajan, N.K. Thangavel, S. Rajendran, M. Yeddala, and L.M.R. Arava, Metal-based electrocatalysts for high-performance lithium–sulfur batteries: A review, Catalysts, 10(2020), No. 10, art. No. 1137. doi: 10.3390/catal10101137
    [14]
    Z.S. Jin, T.N. Lin, H.F. Jia, B.Q. Liu, Q. Zhang, L. Li, L.Y. Zhang, Z.M. Su, and C.G. Wang, Expediting the conversion of Li2S2 to Li2S enables high-performance Li–S batteries, ACS Nano, 15(2021), No. 4, p. 7318. doi: 10.1021/acsnano.1c00556
    [15]
    K. Chen, R.P. Fang, Z. Lian, X.Y. Zhang, P. Tang, B. Li, K. He, D.W. Wang, H.M. Cheng, Z.H. Sun, and F. Li, An in situ solidification strategy to block polysulfides in lithium–sulfur batteries, Energy Storage Mater., 37(2021), p. 224. doi: 10.1016/j.ensm.2021.02.012
    [16]
    J.W. Xiang, Z.Z. Guo, Z.Q. Yi, Y. Zhang, L.X. Yuan, Z.X. Cheng, Y. Shen, and Y.H. Huang, Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium–sulfur batteries, J. Energy Chem., 49(2020), p. 161. doi: 10.1016/j.jechem.2020.01.037
    [17]
    L. Zhou, D.L. Danilov, R.A. Eichel, and P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Adv. Energy Mater., 11(2021), No. 15, art. No. 2001304. doi: 10.1002/aenm.202001304
    [18]
    X.L. Wang, G. Li, J.D. Li, Y.N. Zhang, A. Wook, A.P. Yu, and Z.W. Chen, Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries, Energy Environ. Sci., 9(2016), No. 8, p. 2533. doi: 10.1039/C6EE00194G
    [19]
    X.L. Ji, K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries, Nat. Mater., 8(2009), No. 6, p. 500. doi: 10.1038/nmat2460
    [20]
    D.W. Wang, Q.C. Zeng, G.M. Zhou, L.C. Yin, F. Li, H.M. Cheng, I.R. Gentle, and G.Q.M. Lu, Carbon–sulfur composites for Li–S batteries: Status and prospects, J. Mater. Chem. A, 1(2013), No. 33, p. 9382. doi: 10.1039/c3ta11045a
    [21]
    Y.Z. Fu, Y.S. Su, and A. Manthiram, Sulfur–carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 4(2012), No. 11, p. 6046. doi: 10.1021/am301688h
    [22]
    L. Wang, G.R. Li, S. Liu, and X.P. Gao, Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte, Adv. Funct. Mater., 31(2021), No. 18, art. No. 2010693. doi: 10.1002/adfm.202010693
    [23]
    Z. Zhang, D.H. Wu, Z. Zhou, G.R. Li, S. Liu, and X.P. Gao, Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium–sulfur battery, Sci. China Mater., 62(2019), No. 1, p. 74. doi: 10.1007/s40843-018-9292-7
    [24]
    L. Wang, Y.H. Song, B.H. Zhang, Y.T. Liu, Z.Y. Wang, G.R. Li, S. Liu, and X.P. Gao, Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium–sulfur battery, ACS Appl. Mater. Interfaces, 12(2020), No. 5, p. 5909. doi: 10.1021/acsami.9b20111
    [25]
    Y.T. Liu, S. Liu, G.R. Li, T.Y. Yan, and X.P. Gao, High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium–sulfur battery, Adv. Sci., 7(2020), No. 12, art. No. 1903693. doi: 10.1002/advs.201903693
    [26]
    K. Xi, D.Q. He, C. Harris, Y.K. Wang, C. Lai, H.L. Li, P.R. Coxon, S.J. Ding, C. Wang, and R.V. Kumar, Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium–sulfur batteries, Adv. Sci., 6(2019), No. 6, art. No. 1800815. doi: 10.1002/advs.201800815
    [27]
    T. Chen, Z.W. Zhang, B.R. Cheng, R.P. Chen, Y. Hu, L.B. Ma, G.Y. Zhu, J. Liu, and Z. Jin, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries, J. Am. Chem. Soc., 139(2017), No. 36, p. 12710. doi: 10.1021/jacs.7b06973
    [28]
    H. Peng, Y.G. Zhang, Y.L. Chen, J. Zhang, H. Jiang, X. Chen, Z.G. Zhang, Y.B. Zeng, B.S. Sa, Q.L. Wei, J. Lin, and H. Guo, Reducing polarization of lithium–sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion, Mater. Today Energy, 18(2020), art. No. 100519. doi: 10.1016/j.mtener.2020.100519
    [29]
    L.B. Ma, H. Yuan, W.J. Zhang, G.Y. Zhu, Y.R. Wang, Y. Hu, P.Y. Zhao, R.P. Chen, T. Chen, J. Liu, Z. Hu, and Z. Jin, Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium–sulfur batteries, Nano Lett., 17(2017), No. 12, p. 7839. doi: 10.1021/acs.nanolett.7b04084
    [30]
    R.Q. Liu, W.H. Liu, Y. Bu, W.W. Yang, C. Wang, C. Priest, Z.W. Liu, Y.Z. Wang, J.Y. Chen, Y.H. Wang, J. Cheng, X.J. Lin, X.M. Feng, G. Wu, Y.W. Ma, and W. Huang, Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium–sulfur batteries, ACS Nano, 14(2020), No. 12, p. 17308. doi: 10.1021/acsnano.0c07415
    [31]
    Z.Q. Ye, Y. Jiang, J. Qian, W.L. Li, T. Feng, L. Li, F. Wu, and R.J. Chen, Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries, Nano Energy, 64(2019), art. No. 103965. doi: 10.1016/j.nanoen.2019.103965
    [32]
    H.D. Yuan, X.L. Chen, G.M. Zhou, W.K. Zhang, J.M. Luo, H. Huang, Y.P. Gan, C. Liang, Y. Xia, J. Zhang, J.G. Wang, and X.Y. Tao, Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries, ACS Energy Lett., 2(2017), No. 7, p. 1711. doi: 10.1021/acsenergylett.7b00465
    [33]
    C.Q. Zhang, R.F. Du, J.J. Biendicho, M.J. Yi, K. Xiao, D.W. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Y.T. Zhou, J.R. Morante, and A. Cabot, Tubular CoFeP@CN as a mott-schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries, Adv. Energy Mater., 11(2021), No. 24, art. No. 2100432. doi: 10.1002/aenm.202100432
    [34]
    D. Zhang, Y.X. Luo, B. Wu, P. Zeng, C. Xiang, C.K. Zhao, Z. Sofer, M.F. Chen, and X.Y. Wang, A heterogeneous FeP–CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium–sulfur batteries, Electrochimica Acta, 397(2021), art. No. 139275. doi: 10.1016/j.electacta.2021.139275
    [35]
    J.R. He, A. Bhargav, and A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater., 32(2020), No. 40, art. No. 2004741. doi: 10.1002/adma.202004741
    [36]
    C.C. Li, S.Y. Qi, L. Zhu, Y. Zhao, R.Z. Huang, Y.Y. He, W.N. Ge, X.B. Liu, M.W. Zhao, L.Q. Xu, and Y.T. Qian, Regulating polysulfide intermediates by ultrathin Co–Bi nanosheet electrocatalyst in lithium−sulfur batteries, Nano Today, 40(2021), art. No. 101246. doi: 10.1016/j.nantod.2021.101246
    [37]
    Y.P. Xiao, Y. Li, Z.L. Guo, C.C. Tang, B.S. Sa, N.H. Miao, J. Zhou, and Z.M. Sun, Functionalized Mo2B2 MBenes: Promising anchoring and electrocatalysis materials for lithium–sulfur battery, Appl. Surf. Sci., 566(2021), art. No. 150634. doi: 10.1016/j.apsusc.2021.150634
    [38]
    G.R. Li, H.Y. Li, and H.B. Zeng, Recent progress of boron-based materials in lithium–sulfur battery, J. Inorg. Mater., 37(2022), No. 2, art. No. 152. doi: 10.15541/jim20210183
    [39]
    Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li, and X.P. Gao, Crystalline multi-metallic compounds as host materials in cathode for lithium–sulfur batteries, Small, 17(2021), No. 22, art. No. 2005332. doi: 10.1002/smll.202005332
    [40]
    Z.S. Wang, X.J. Xu, Z.B. Liu, D.C. Zhang, J.J. Yuan, and J. Liu, Multifunctional metal phosphides as superior host materials for advanced lithium–sulfur batteries, Chem. A Eur. J., 27(2021), No. 54, p. 13494. doi: 10.1002/chem.202101873
    [41]
    Y.T. Qin, Y.C. Zhang, and X.D. Zhu, Research progress on metal borides as cathode carrier materials for Li–S batteries, Nonferrous Met. Eng., 11(2021), No. 11, p. 137.
    [42]
    Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu, R.Z. Hu, L.C. Yang, Y.Z. Feng, J. Liu, Z.C. Shi, L.Z. Ouyang, Y. Yu, and M. Zhu, Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries, Adv. Mater., 31(2019), No. 33, art. No. 1902228. doi: 10.1002/adma.201902228
    [43]
    B. Guan, L.S. Fan, X. Wu, P.X. Wang, Y. Qiu, M.X. Wang, Z.K. Guo, N.Q. Zhang, and K.N. Sun, The facile synthesis and enhanced lithium–sulfur battery performance of an amorphous cobalt boride (Co2B)@graphene composite cathode, J. Mater. Chem. A, 6(2018), No. 47, p. 24045. doi: 10.1039/C8TA09301F
    [44]
    H. Yuan, H.J. Peng, J.Q. Huang, and Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: A perspective, Adv. Mater. Interfaces, 6(2019), No. 4, art. No. 1802046. doi: 10.1002/admi.201802046
    [45]
    Y.Z. Song, W.L. Cai, L. Kong, J.S. Cai, Q. Zhang, and J.Y. Sun, Rationalizing electrocatalysis of Li–S chemistry by mediator design: Progress and prospects, Adv. Energy Mater., 10(2020), No. 11, art. No. 1901075. doi: 10.1002/aenm.201901075
    [46]
    Y.T. Liu, S. Liu, G.R. Li, and X.P. Gao, Strategy of enhancing the volumetric energy density for lithium–sulfur batteries, Adv. Mater., 33(2021), No. 8, art. No. 2003955. doi: 10.1002/adma.202003955
    [47]
    J.J. Chen and Q.F. Dong, Research progress of key components in lithium–sulfur batteries, J. Electrochem., 26(2020), No. 5, p. 648.
    [48]
    Z. Lin and C.D. Liang, Lithium–sulfur batteries: From liquid to solid cells, J. Mater. Chem. A, 3(2015), No. 3, p. 936. doi: 10.1039/C4TA04727C
    [49]
    B.H. Zhang, J.F. Wu, J.K. Gu, S. Li, T.Y. Yan, and X.P. Gao, The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries, ACS Energy Lett., 6(2021), No. 2, p. 537. doi: 10.1021/acsenergylett.0c02527
    [50]
    Y. Li, Z.H. Dong, and L.F. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis, Adv. Energy Mater., 10(2020), No. 11, art. No. 1902104. doi: 10.1002/aenm.201902104
    [51]
    H. Chen and X.X. Zou, Intermetallic borides: Structures, synthesis and applications in electrocatalysis, Inorg. Chem. Front., 7(2020), No. 11, p. 2248. doi: 10.1039/D0QI00146E
    [52]
    L. Cui, W.X. Zhang, R.K. Zheng, and J.Q. Liu, Electrocatalysts based on transition metal borides and borates for the oxygen evolution reaction, Chem. A Eur. J., 26(2020), No. 51, p. 11661. doi: 10.1002/chem.202000880
    [53]
    Y.H. Yao, Z.Y. Zhang, and L.F. Jiao, Development strategies in transition metal borides for electrochemical water splitting, Energy Environ. Mater., (2021). DOI: 10.1002/eem2.12198
    [54]
    P. Xiao, W. Chen, and X. Wang, A review of phosphide-based materials for electrocatalytic hydrogen evolution, Adv. Energy Mater., 5(2015), No. 24, art. No. 1500985
    [55]
    Z.F. Li, Y. Zheng, Q.Y. Liu, Y.Q. Wang, D.H. Wang, Z.K. Li, P.L. Zheng, and Z.H. Liu, Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries, J. Mater. Chem. A, 8(2020), No. 37, p. 19113. doi: 10.1039/D0TA06533A
    [56]
    S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled metal borides and phosphides: Recent developments and perspectives, Chem. Rev., 113(2013), No. 10, p. 7981. doi: 10.1021/cr400020d
    [57]
    Y.N. Liu, A.J. McCue, and D.Q. Li, Metal phosphides and sulfides in heterogeneous catalysis: Electronic and geometric effects, ACS Catal., 11(2021), No. 15, p. 9102. doi: 10.1021/acscatal.1c01718
    [58]
    S. Huang, E. Huixiang, Y. Yang, Y.F. Zhang, M.H. Ye, and C.C. Li, Transition metal phosphides: New generation cathode host/separator modifier for Li–S batteries, J. Mater. Chem. A, 9(2021), No. 12, p. 7458. doi: 10.1039/D0TA11919A
    [59]
    S.L. Yu, W.L. Cai, L. Chen, L.X. Song, and Y.Z. Song, Recent advances of metal phosphides for Li–S chemistry, J. Energy Chem., 55(2021), p. 533. doi: 10.1016/j.jechem.2020.07.020
    [60]
    J.T. Ren, Z.P. Hu, C. Chen, Y.P. Liu, and Z.Y. Yuan, Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation, J. Energy Chem., 26(2017), No. 6, p. 1196. doi: 10.1016/j.jechem.2017.07.016
    [61]
    M.X. He, C.Q. Feng, T. Liao, S.N. Hu, H.M. Wu, and Z.Q. Sun, Low-cost Ni2P/Ni0.96S heterostructured bifunctional electrocatalyst toward highly efficient overall urea-water electrolysis, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2225. doi: 10.1021/acsami.9b14350
    [62]
    Y.Y. Dou, G.R. Li, J. Song, and X.P. Gao, Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 14(2012), No. 4, p. 1339. doi: 10.1039/C2CP23775J
    [63]
    S. Wang, Y. Xie, K.Y. Shi, W. Zhou, Z.P. Xing, K. Pan, and A. Cabot, Monodispersed nickel phosphide nanocrystals in situ grown on reduced graphene oxide with controllable size and composition as a counter electrode for dye-sensitized solar cells, ACS Sustain. Chem. Eng., 8(2020), No. 15, p. 5920. doi: 10.1021/acssuschemeng.0c00005
    [64]
    Z.Z. Du, W. Ai, J. Yang, Y.J. Gong, C.Y. Yu, J.F. Zhao, X.C. Dong, G.Z. Sun, and W. Huang, In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 14795. doi: 10.1021/acssuschemeng.8b03327
    [65]
    J.H. Cheng, D. Zhao, L.S. Fan, X. Wu, M.X. Wang, N.Q. Zhang, and K.N. Sun, Ultra-high rate Li–S batteries based on a novel conductive Ni2P yolk–shell material as the host for the S cathode, J. Mater. Chem. A, 5(2017), No. 28, p. 14519. doi: 10.1039/C7TA03236F
    [66]
    F. Zhang, Z. Li, T. Cao, K. Qin, Q.J. Xu, H.M. Liu, and Y.Y. Xia, Multishelled Ni2P microspheres as multifunctional sulfur host 3D-printed cathode materials ensuring high areal capacity of lithium–sulfur batteries, ACS Sustainable Chem. Eng., 9(2021), No. 17, p. 6097. doi: 10.1021/acssuschemeng.1c01580
    [67]
    X.F. Yu, D.X. Tian, W.C. Li, B. He, Y. Zhang, Z.Y. Chen, and A.H. Lu, One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li–S battery, Nano Res., 12(2019), No. 5, p. 1193. doi: 10.1007/s12274-019-2381-0
    [68]
    R. Gao, Z. Y. Wang, L. Wang, P. Chen, S. Liu, Z. P. Ma, and G. J. Shao, Ni2P nanosheets on graphene as a sulfur cathode material for lithium–sulfur batteries, Chinese J. Inorg. Chem., (2022), DOI: 10.11862/CJIC.2022.070
    [69]
    J.H. Cheng, D. Zhao, L.S. Fan, X. Wu, M.X. Wang, H.X. Wu, B. Guan, N.Q. Zhang, and K.N. Sun, A conductive Ni2P nanoporous composite with a 3D structure derived from a metal–organic framework for lithium–sulfur batteries, Chem. A Eur. J., 24(2018), No. 50, p. 13253. doi: 10.1002/chem.201801939
    [70]
    J.Q. Liu, X.N. Liu, Q. Zhang, X. Liang, J. Yan, H.H. Tan, Y. Yu, and Y.C. Wu, Integration of nickel phosphide nanodot-enriched 3D graphene-like carbon with carbon fibers as self-supported sulfur hosts for advanced lithium sulfur batteries, Electrochim. Acta, 382(2021), art. No. 138267. doi: 10.1016/j.electacta.2021.138267
    [71]
    Y.R. Zhong, L.C. Yin, P. He, W. Liu, Z.S. Wu, and H.L. Wang, Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries, J. Am. Chem. Soc., 140(2018), No. 4, p. 1455. doi: 10.1021/jacs.7b11434
    [72]
    Z.Y. Li, Y.L. Zou, J.L. Duan, and B. Long, Coral-like CoP hollow composites as effective host cathodes for lithium–sulfur batteries, Ionics, 25(2019), No. 10, p. 4625. doi: 10.1007/s11581-019-03047-9
    [73]
    J.B. Zhou, X.J. Liu, L.Q. Zhu, J. Zhou, Y. Guan, L. Chen, S.W. Niu, J.Y. Cai, D. Sun, Y.C. Zhu, J. Du, G.M. Wang, and Y.T. Qian, Deciphering the modulation essence of p bands in Co-based compounds on Li–S chemistry, Joule, 2(2018), No. 12, p. 2681. doi: 10.1016/j.joule.2018.08.010
    [74]
    K.K. Xiao, Z. Chen, Z. Liu, L.L. Zhang, X.Y. Cai, C.S. Song, Z.F. Fan, X.H. Chen, J.L. Liu, and Z.X. Shen, N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li–S batteries via triple synergistic effects, J. Power Sources, 455(2020), art. No. 227959. doi: 10.1016/j.jpowsour.2020.227959
    [75]
    Q. Cheng, Z.H. Yin, S.Y. Pan, G.Z. Zhang, Z.X. Pan, X.Y. Yu, Y.P. Fang, H.S. Rao, and X.H. Zhong, Enhancing adsorption and reaction kinetics of polysulfides using CoP-coated N-doped mesoporous carbon for high-energy-density lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 39, p. 43844. doi: 10.1021/acsami.0c13601
    [76]
    H.Y. Zhang, S.S. Xin, J. Li, H.T. Cui, Y.Y. Liu, Y.Z. Yang, and M.R. Wang, Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP–HNC nanocages for high-performance lithium–sulfur batteries, Nano Energy, 85(2021), art. No. 106011. doi: 10.1016/j.nanoen.2021.106011
    [77]
    R. Sun, Y. Bai, M. Luo, M.X. Qu, Z.H. Wang, W. Sun, and K.N. Sun, Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries, ACS Nano, 15(2021), No. 1, p. 739. doi: 10.1021/acsnano.0c07038
    [78]
    Y.X. Yang, Y.R. Zhong, Q.W. Shi, Z.H. Wang, K.N. Sun, and H.L. Wang, Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions, Angew. Chem. Int. Ed., 57(2018), No. 47, p. 15549. doi: 10.1002/anie.201808311
    [79]
    G. Xia, J.J. Ye, Z.Q. Zheng, X.T. Li, C.Z. Chen, and C. Hu, Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium–sulfur batteries, Carbon, 172(2021), p. 96. doi: 10.1016/j.carbon.2020.09.094
    [80]
    Y.G. Zhang, Y.G. Wang, R.J. Luo, Y. Yang, Y. Lu, Y. Guo, X.M. Liu, S.X. Cao, J.K. Kim, and Y.S. Luo, A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries, Nanoscale Horiz., 5(2020), No. 3, p. 530. doi: 10.1039/C9NH00532C
    [81]
    X.G. Gao, Y. Huang, X. Li, H. Gao, and T.H. Li, SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and “adsorption nest” to enable enhanced lithium–sulfur batteries, Chem. Eng. J., 420(2021), art. No. 129724. doi: 10.1016/j.cej.2021.129724
    [82]
    Z.H. Shen, M.Q. Cao, Z.L. Zhang, J. Pu, C.L. Zhong, J.C. Li, H.X. Ma, F.J. Li, J. Zhu, F. Pan, and H.G. Zhang, Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery, Adv. Funct. Mater., 30(2020), No. 3, art. No. 1906661. doi: 10.1002/adfm.201906661
    [83]
    L. Wang, M. Zhang, B. Zhang, B. Wang, J.M. Dou, Z. Kong, C.S. Wang, X.P. Sun, Y.T. Qian, and L.Q. Xu, A porous polycrystalline NiCo2Px as a highly efficient host for sulfur cathodes in Li–S batteries, J. Mater. Chem. A, 9(2021), No. 40, p. 23149. doi: 10.1039/D1TA06249B
    [84]
    J.L. Duan, Y.L. Zou, Z.Y. Li, B. Long, and Y.Y. Du, Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery, J. Electroanal. Chem., 847(2019), art. No. 113187. doi: 10.1016/j.jelechem.2019.113187
    [85]
    Y. Chen, W.X. Zhang, D. Zhou, H.J. Tian, D.W. Su, C.Y. Wang, D. Stockdale, F.Y. Kang, B.H. Li, and G.X. Wang, Co−Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium−sulfur batteries, ACS Nano, 13(2019), No. 4, p. 4731. doi: 10.1021/acsnano.9b01079
    [86]
    X.X. Chen, S.Y. Zeng, H. Muheiyati, Y.J. Zhai, C.C. Li, X.Y. Ding, L. Wang, D.B. Wang, L.Q. Xu, Y.Y. He, and Y.T. Qian, Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries, ACS Energy Lett., 4(2019), No. 7, p. 1496. doi: 10.1021/acsenergylett.9b00573
    [87]
    Z.Y. Wang, H.M. Wang, S. Liu, G.R. Li, and X.P. Gao, To promote the catalytic conversion of polysulfides using Ni−B alloy nanoparticles on carbon nanotube microspheres under high sulfur loading and a lean electrolyte, ACS Appl. Mater. Interfaces, 13(2021), No. 17, p. 20222. doi: 10.1021/acsami.1c03791
    [88]
    C.C. Li, X.B. Liu, L. Zhu, R.Z. Huang, M.W. Zhao, L.Q. Xu, and Y.T. Qian, Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries, Chem. Mater., 30(2018), No. 20, p. 6969. doi: 10.1021/acs.chemmater.8b01352
    [89]
    Q. Pang, C.Y. Kwok, D.P. Kundu, X. Liang, and L.F. Nazar, Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium–sulfur batteries, Joule, 3(2019), No. 1, p. 136. doi: 10.1016/j.joule.2018.09.024
    [90]
    Z.L. Li, P.Y. Li, X.P. Meng, Z. Lin, and R.H. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium–sulfur batteries, Adv. Mater., 33(2021), No. 42, art. No. 2102338. doi: 10.1002/adma.202102338
    [91]
    X.X. Chen, X.Y. Ding, C.S. Wang, Z.Y. Feng, L.Q. Xu, X. Gao, Y.J. Zhai, and D.B. Wang, A multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries, Nanoscale, 10(2018), No. 28, p. 13694. doi: 10.1039/C8NR03854F
    [92]
    L.M. Jin, J. Ni, C. Shen, F.L. Peng, Q. Wu, D.H. Ye, J.S. Zheng, G.R. Li, C.M. Zhang, Z.P. Li, and J.P. Zheng, Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries, J. Power Sources, 448(2020), art. No. 227336. doi: 10.1016/j.jpowsour.2019.227336
    [93]
    S. Liu, G.R. Li, and X.P. Gao, Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium–sulfur battery, ACS Appl. Mater. Interfaces, 8(2016), No. 12, p. 7783. doi: 10.1021/acsami.5b12231
    [94]
    B.S. Zhao, L. Wang, S. Liu, G.R. Li, and X.P. Gao, High-efficiency hybrid sulfur cathode based on electroactive niobium tungsten oxide and conductive carbon nanotubes for all-solid-state lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1212. doi: 10.1021/acsami.1c21573
    [95]
    X.F. Yang, J. Luo, and X.L. Sun, Towards high-performance solid-state Li–S batteries: From fundamental understanding to engineering design, Chem. Soc. Rev., 49(2020), No. 7, p. 2140. doi: 10.1039/C9CS00635D
    [96]
    L.Y. Tian, Z. Zhang, S. Liu, G.R. Li, and X.P. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries, Energy Environ. Mater., (2021). DOI: 10.1002/eem2.12215.
    [97]
    Y.N. Zheng, Y.K. Yi, M.H. Fan, H.Y. Liu, X. Li, R. Zhang, M.T. Li, and Z.N. Qiao, A high-entropy metal oxide as chemical anchor of polysulfide for lithium–sulfur batteries, Energy Storage Mater., 23(2019), p. 678. doi: 10.1016/j.ensm.2019.02.030
    [98]
    H.F. Xu, R.M. Hu, Y.Z. Zhang, H.B. Yan, Q. Zhu, J.X. Shang, S.B. Yang, and B. Li, Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries, Energy Storage Mater., 43(2021), p. 212. doi: 10.1016/j.ensm.2021.09.003
    [99]
    Z.Y. Wang, H.L. Ge, S. Liu, G.R. Li, and X.P. Gao, High-entropy alloys to activate the sulfur cathode for lithium–sulfur batteries, Energy Environ. Mater., (2022). DOI: 10.1002/eem2.12358.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(2140) PDF Downloads(132) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return