Cite this article as: |
Yue Liu, Shaobo Huang, Shanlong Peng, Heng Zhang, Lifan Wang, and Xindong Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1090-1098. https://doi.org/10.1007/s12613-022-2452-1 |
Lifan Wang E-mail: wanglifanustb@163.com
Xindong Wang E-mail: echem@ustb.edu.cn
Supplementary Information12613-022-2452-1-z.docx |
[1] |
C. Liu, M. Shviro, A.S. Gago, et al., Exploring the interface of skin-layered titanium fibers for electrochemical water splitting, Adv. Energy Mater., 11(2021), No. 8, art. No. 2002926. doi: 10.1002/aenm.202002926
|
[2] |
M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
|
[3] |
C. Niether, S. Faure, A. Bordet, et al., Improved water electrolysis using magnetic heating of FeC–Ni core-shell nanoparticles, Nat. Energy, 3(2018), No. 6, p. 476. doi: 10.1038/s41560-018-0132-1
|
[4] |
A. Landman, H. Dotan, G.E. Shter, et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells, Nat. Mater., 16(2017), No. 6, p. 646. doi: 10.1038/nmat4876
|
[5] |
F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Sol. Energy, 78(2005), No. 5, p. 661. doi: 10.1016/j.solener.2004.09.003
|
[6] |
H. Ito, T. Maeda, A. Nakano, A. Kato, and T. Yoshida, Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer, Electrochim. Acta, 100(2013), p. 242. doi: 10.1016/j.electacta.2012.05.068
|
[7] |
F. Arbabi, A. Kalantarian, R. Abouatallah, R. Wang, J.S. Wallace, and A. Bazylak, Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers, J. Power Sources, 258(2014), p. 142. doi: 10.1016/j.jpowsour.2014.02.042
|
[8] |
S. Siracusano, A. Di Blasi, V. Baglio, et al., Optimization of components and assembling in a PEM electrolyzer stack, Int. J. Hydrogen Energy, 36(2011), No. 5, p. 3333. doi: 10.1016/j.ijhydene.2010.12.044
|
[9] |
N. Sato, An overview on the passivity of metals, Corros. Sci., 31(1990), p. 1. doi: 10.1016/0010-938X(90)90086-K
|
[10] |
H.Y. Jung, S.Y. Huang, P. Ganesan, and B.N. Popov, Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation, J. Power Sources, 194(2009), No. 2, p. 972. doi: 10.1016/j.jpowsour.2009.06.030
|
[11] |
S.H. Wang, J. Peng, and W.B. Lui, Surface modification and development of titanium bipolar plates for PEM fuel cells, J. Power Sources, 160(2006), No. 1, p. 485. doi: 10.1016/j.jpowsour.2006.01.020
|
[12] |
M.J. Hwang, E.J. Park, W.J. Moon, H.J. Song, and Y.J. Park, Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion, Corros. Sci., 96(2015), p. 152. doi: 10.1016/j.corsci.2015.04.007
|
[13] |
Z.X. He, Y.R. Lv, T.A. Zhang, et al., Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst, Chem. Eng. J., 427(2022), art. No. 131680. doi: 10.1016/j.cej.2021.131680
|
[14] |
S.H. Wang, W.B. Lui, J. Peng, and J.S. Zhang, Performance of the iridium oxide (IrO2)-modified titanium bipolar plates for the light weight proton exchange membrane fuel cells, J. Fuel Cell Sci. Technol., 10(2013), No. 4, art. No. 041002. doi: 10.1115/1.4024565
|
[15] |
H. Wakayama and K. Yamazaki, Low-cost bipolar plates of Ti4O7-coated Ti for water electrolysis with polymer electrolyte membranes, ACS Omega, 6(2021), No. 6, p. 4161. doi: 10.1021/acsomega.0c04786
|
[16] |
Y.Z. Chen, D.J. Jiang, Z.Q. Gong, J.Y. Li, and L.N. Wang, Anodized metal oxide nanostructures for photoelectrochemical water splitting, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 584. doi: 10.1007/s12613-020-1983-6
|
[17] |
T.J. Toops, M.P. Brady, F.Y. Zhang, et al., Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells, J. Power Sources, 272(2014), p. 954. doi: 10.1016/j.jpowsour.2014.09.016
|
[18] |
J. Bi, J.M. Yang, X.X. Liu, et al., Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 1, p. 1144. doi: 10.1016/j.ijhydene.2020.09.217
|
[19] |
K. Feng, D.T.K. Kwok, D.A. Liu, Z.G. Li, X. Cai, and P.K. Chu, Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells, J. Power Sources, 195(2010), No. 19, p. 6798. doi: 10.1016/j.jpowsour.2010.04.053
|
[20] |
A. Shenhar, I. Gotman, E.Y. Gutmanas, and P. Ducheyne, Surface modification of titanium alloy orthopaedic implants via novel powder immersion reaction assisted coating nitriding method, Mater. Sci. Eng. A, 268(1999), No. 1-2, p. 40. doi: 10.1016/S0921-5093(99)00111-2
|
[21] |
X. Zhang, W.W. Yang, M.Y. Gao, H. Liu, K.F. Li, and Y.S. Yu, Room-temperature solid phase surface engineering of BiOI sheets stacking g-C3N4 boosts photocatalytic reduction of Cr(VI), Green Energy Environ., 7(2022), No. 1, p. 66. doi: 10.1016/j.gee.2020.07.024
|
[22] |
E. Petkucheva, G. Borisov, E. Lefterova, J. Heiss, U. Schnakenberg, and E. Slavcheva, Gold-supported magnetron sputtered Ir thin films as OER catalysts for cost-efficient water electrolysis, Int. J. Hydrogen Energy, 43(2018), No. 35, p. 16905. doi: 10.1016/j.ijhydene.2018.01.188
|
[23] |
M. Stern and H. Wissenberg, The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium, J. Electrochem. Soc., 106(1959), No. 9, art. No. 759. doi: 10.1149/1.2427493
|
[24] |
L. Jiang, J.A. Syed, Y.Z. Gao, H.B. Lu, and X.K. Meng, Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel, Appl. Surf. Sci., 440(2018), p. 1011. doi: 10.1016/j.apsusc.2018.01.145
|
[25] |
Y. Wang and D.O. Northwood, An investigation into the effects of a nano-thick gold interlayer on polypyrrole coatings on 316L stainless steel for the bipolar plates of PEM fuel cells, J. Power Sources, 175(2008), No. 1, p. 40. doi: 10.1016/j.jpowsour.2007.09.089
|
[26] |
C. Xia, Y. Li, Y. Tian, et al., Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte, J. Power Sources, 195(2010), No. 10, p. 3149. doi: 10.1016/j.jpowsour.2009.11.104
|
[27] |
L. Ai, Y. Liu, X.Y. Zhang, X.H. Ouyang, and Z.Y. Ge, A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings, Synth. Met., 191(2014), p. 41. doi: 10.1016/j.synthmet.2014.02.004
|
[28] |
K. Zhang and S. Sharma, Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells, ACS Sustain. Chem. Eng., 5(2017), No. 1, p. 277. doi: 10.1021/acssuschemeng.6b01504
|
[29] |
A. Jacques, B. Barthélémy, J. Delhalle, and Z. Mekhalif, 1-Pyrrolyl-10-decylammoniumphosphonate monolayer: A molecular nanolink between electropolymerized pyrrole films and nickel or titanium surfaces, Electrochim. Acta, 170(2015), p. 218. doi: 10.1016/j.electacta.2015.04.123
|
[30] |
M. Rohwerder and A. Michalik, Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta, 53(2007), No. 3, p. 1300. doi: 10.1016/j.electacta.2007.05.026
|
[31] |
J.L. Tan, Z. Zhang, and D.T. Ge, Electrodeposition of adherent polypyrrole film on titanium surface with enhanced anti-corrosion performance, MATEC Web Conf., 130(2017), art. No. 08007. doi: 10.1051/matecconf/201713008007
|
[32] |
V. Ball, Polydopamine films and particles with catalytic activity, Catal. Today, 301(2018), p. 196. doi: 10.1016/j.cattod.2017.01.031
|
[33] |
Y. Liang, J. Wei, Y.X. Hu, et al., Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles, Nanoscale, 9(2017), No. 16, p. 5323. doi: 10.1039/C7NR00978J
|
[34] |
T.L. Chang, X.J. Yu, and J.F. Liang, Polydopamine-enabled surface coating with nano-metals, Surf. Coat. Technol., 337(2018), p. 389. doi: 10.1016/j.surfcoat.2018.01.009
|
[35] |
W. Tamakloe, D.A. Agyeman, M. Park, J. Yang, and Y.M. Kang, Polydopamine-induced surface functionalization of carbon nanofibers for Pd deposition enabling enhanced catalytic activity for the oxygen reduction and evolution reactions, J. Mater. Chem. A, 7(2019), No. 13, p. 7396. doi: 10.1039/C9TA00025A
|
[36] |
X.H. Guo, M. Zhang, J. Zheng, et al., Fabrication of Co@SiO2@C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction, Dalton Trans., 46(2017), No. 35, p. 11598. doi: 10.1039/C7DT02095C
|
[37] |
C.H. Liu, Y.Y. Qiu, Y.J. Xia, et al., Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution, Nanotechnology, 28(2017), No. 44, art. No. 445403. doi: 10.1088/1361-6528/aa8613
|
[38] |
K.M. Im, T.W. Kim, and J.R. Jeon, Metal-chelation-assisted deposition of polydopamine on human hair: A ready-to-use eumelanin-based hair dyeing methodology, ACS Biomater. Sci. Eng., 3(2017), No. 4, p. 628. doi: 10.1021/acsbiomaterials.7b00031
|
[39] |
H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318(2007), No. 5849, p. 426. doi: 10.1126/science.1147241
|
[40] |
H.Q. Li, Y.V. Aulin, L. Frazer, et al., Structure evolution and thermoelectric properties of carbonized polydopamine thin films, ACS Appl. Mater. Interfaces, 9(2017), No. 8, p. 6655. doi: 10.1021/acsami.6b15601
|
[41] |
J.A.A. Ho, H.C. Chang, and W.T. Su, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions, Anal. Chem., 84(2012), No. 7, p. 3246. doi: 10.1021/ac203362g
|
[42] |
C.C. Lu, M. Zhang, A.J. Li, X.W. He, and X.B. Yin, 3, 4-dihydroxy-L-phenylalanine for preparation of gold nanoparticles and as electron transfer promoter in H2O2 biosensor, Electroanalysis, 23(2011), No. 10, p. 2421. doi: 10.1002/elan.201100291
|
[43] |
P.C. Huang, W.J. Ma, P. Yu, and L.Q. Mao, Dopamine-directed in situ and one-step synthesis of Au@Ag core-shell nanoparticles immobilized to a metal-organic framework for synergistic catalysis, Chem. Asian J., 11(2016), No. 19, p. 2705. doi: 10.1002/asia.201600469
|
[44] |
Y.Z. Ni, G.S. Tong, J. Wang, et al., One-pot preparation of pomegranate-like polydopamine stabilized small gold nanoparticles with superior stability for recyclable nanocatalysts, RSC Adv., 6(2016), No. 47, p. 40698. doi: 10.1039/C6RA05902C
|
[45] |
G.X. Su, C. Yang, and J.J. Zhu, Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine, Langmuir, 31(2015), No. 2, p. 817. doi: 10.1021/la504041f
|
[46] |
V. Ball, D.D. Frari, V. Toniazzo, and D. Ruch, Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism, J. Colloid Interface Sci., 386(2012), No. 1, p. 366. doi: 10.1016/j.jcis.2012.07.030
|
[47] |
J.H. Jiang, L.P. Zhu, L.J. Zhu, B.K. Zhu, and Y.Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films, Langmuir, 27(2011), No. 23, p. 14180. doi: 10.1021/la202877k
|
[48] |
W. Zhang, F.K. Yang, Y.G. Han, R. Gaikwad, Z. Leonenko, and B.X. Zhao, Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions, Biomacromolecules, 14(2013), No. 2, p. 394. doi: 10.1021/bm3015768
|
[49] |
F. Bernsmann, V. Ball, F. Addiego, et al., Dopamine–melanin film deposition depends on the used oxidant and buffer solution, Langmuir, 27(2011), No. 6, p. 2819. doi: 10.1021/la104981s
|
[50] |
Y.H. Lee and T.G. Park, Facile fabrication of branched gold nanoparticles by reductive hydroxyphenol derivatives, Langmuir, 27(2011), No. 6, p. 2965. doi: 10.1021/la1044078
|
[51] |
M. Bisaglia, S. Mammi, and L. Bubacco, Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with α-synuclein, J. Biol. Chem., 282(2007), No. 21, p. 15597. doi: 10.1074/jbc.M610893200
|
[52] |
I. Iftikhar, K.M.A. El-Nour, and A. Brajter-Toth, Detection of transient dopamine antioxidant radicals using electrochemistry in electrospray ionization mass spectrometry, Electrochim. Acta, 249(2017), p. 145. doi: 10.1016/j.electacta.2017.07.087
|
[53] |
S.N. Du, Y. Luo, Z.F. Liao, et al., New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent, J. Colloid Interface Sci., 523(2018), p. 27. doi: 10.1016/j.jcis.2018.03.077
|
[54] |
O. Terland, T. Flatmark, A. Tangerås, and M. Grønberg, Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species, J. Mol. Cell. Cardiol., 29(1997), No. 6, p. 1731. doi: 10.1006/jmcc.1997.0412
|
[55] |
A. Klegeris, L.G. Korkina, and S.A. Greenfield, Autoxidation of dopamine: A comparison of luminescent and spectrophotometric detection in basic solutions, Free. Radic. Biol. Med., 18(1995), No. 2, p. 215. doi: 10.1016/0891-5849(94)00141-6
|
[56] |
S.P. Mani, C. Anandan, and N. Rajendran, Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC), RSC Adv., 5(2015), No. 79, p. 64466. doi: 10.1039/C5RA05412E
|