Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1373-1379. https://dx.doi.org/10.1007/s12613-022-2456-x
Cite this article as: Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1373-1379. https://dx.doi.org/10.1007/s12613-022-2456-x

High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

  • The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450–525°C and strain rates of 3.0 s−1 and 0.15 s−1 were investigated by tensile tests. Zero ductility of alloy appeared at 500°C with a strain rate of 0.15 s−1, while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525°C with a strain rate of 3.0 s−1. The results indicated that the lower strain rate accelerated the arrival of zero ductility. As the temperature increased, the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces. The existence of the low-melting composite of β-Mg17Al12 and Al8Mn5 particles segregated near the Mg17Al12 phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures. Furthermore, microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return