Cite this article as: |
Huadong Fu, Hongtao Zhang, Changsheng Wang, Wei Yong, and Jianxin Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 635-644. https://doi.org/10.1007/s12613-022-2458-8 |
[1] |
P.H. Abelson, Materials research and applications, Science, 274(1996), No. 5291, p. 1283. doi: 10.1126/science.274.5291.1283
|
[2] |
K. Lu, The future of metals, Science, 328(2010), p. 319. doi: 10.1126/science.1185866
|
[3] |
U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398. doi: 10.1007/s12613-020-2077-1
|
[4] |
Z.S. Nong, H.Y. Wang, and J. C. Zhu, First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67 (HfZrTi)0.33 high-entropy alloy under high pressure, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1405. doi: 10.1007/s12613-020-2095-z
|
[5] |
J.P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Lightweight materials for aircraft applications, Mater. Charact., 35(1995), No. 1, p. 41. doi: 10.1016/1044-5803(95)00066-6
|
[6] |
T.M. Pollock, Alloy design for aircraft engines, Nat. Mater., 15(2016), No. 8, p. 809. doi: 10.1038/nmat4709
|
[7] |
Z. Li, Z. Xiao, Y.B. Jiang, Q. Lei, and J.X. Xie, Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity, Chin. J. Noferrous Met., 29(2019), No. 9, p. 2009.
|
[8] |
Y.J. Su, D.W. Zhang, Q. Feng, and J.X. Xie, A vision of materials genome engineering in China, Engineering, 2022. DOI: 10.1016/j.eng.2021.12.008
|
[9] |
J.X. Xie, Y.J. Su, D.Z. Xue, X. Jiang, H.D. Fu, and H.Y. Huang, Machine learning for materials research and development, Acta Metall. Sinica, 57(2021), No. 11, p. 1343.
|
[10] |
Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, G.Q. Yang, T. Zhang, M. Wu, and X.H. Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
|
[11] |
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Machine learning for molecular and materials science, Nature, 559(2018), No. 7715, p. 547. doi: 10.1038/s41586-018-0337-2
|
[12] |
T. Lookman, P.V. Balachandran, D.Z. Xue, and R.H. Yuan, Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design, npj Comput. Mater., 5(2019), art. No. 21. doi: 10.1038/s41524-019-0153-8
|
[13] |
J. Wang, X.Y. Yang, Z. Zeng, X.L. Zhang, X.S. Zhao, and Z.G. Wang, New methods for prediction of elastic constants based on density functional theory combined with machine learning, Comput. Mater. Sci., 138(2017), p. 135. doi: 10.1016/j.commatsci.2017.06.015
|
[14] |
L. Huber, R. Hadian, B. Grabowski, and J. Neugebauer, A machine learning approach to model solute grain boundary segregation, npj Comput. Mater., 4(2018), art. No. 64. doi: 10.1038/s41524-018-0122-7
|
[15] |
A. Agrawal and A. Choudhary, An online tool for predicting fatigue strength of steel alloys based on ensemble data mining, Int. J. Fatigue, 113(2018), p. 389. doi: 10.1016/j.ijfatigue.2018.04.017
|
[16] |
W.J. Huang, P. Martin, and H.L. Zhuang, Machine-learning phase prediction of high-entropy alloys, Acta Mater., 169(2019), p. 225. doi: 10.1016/j.actamat.2019.03.012
|
[17] |
Y.F. Chen, Y. Tian, Y.M. Zhou, D.Q. Fang, X.D. Ding, J. Sun, and D.Z. Xue, Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy, J. Alloys Compd., 844(2020), art. No. 156159. doi: 10.1016/j.jallcom.2020.156159
|
[18] |
A. Famili, W.M. Shen, R. Weber, and E. Simoudis, Data preprocessing and intelligent data analysis, Intell. Data Anal., 1(1997), No. 1-4, p. 3. doi: 10.1016/S1088-467X(98)00007-9
|
[19] |
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature, 533(2016), No. 7601, p. 73. doi: 10.1038/nature17439
|
[20] |
R.H. Yuan, Z. Liu, P.V. Balachandran, D.Q. Xue, Y.M. Zhou, X.D. Ding, J. Sun, D.Z. Xue, and T. Lookman, Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning, Adv. Mater., 30(2018), No. 7, art. No. 1702884. doi: 10.1002/adma.201702884
|
[21] |
D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1(1997), No. 1, p. 67. doi: 10.1109/4235.585893
|
[22] |
J.R. Quinlan, Induction of decision trees, Mach. Learn., 1(1986), p. 81. doi: 10.1007/BF00116251
|
[23] |
D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors, Nature, 323(1986), No. 6088, p. 533. doi: 10.1038/323533a0
|
[24] |
C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20(1995), p. 273. doi: 10.1007/BF00994018
|
[25] |
I. Kononenko, Semi-naive Bayesian classifier, [in] European Working Session on Learning, Springer, Berlin, Heidelberg, 1991, p. 206.
|
[26] |
A. Zunger, Inverse design in search of materials with target functionalities, Nat. Rev. Chem., 2(2018), art. No. 0121. doi: 10.1038/s41570-018-0121
|
[27] |
S. Kunnikuruvan, A. Chakraborty, and D.T. Major, Monte Carlo- and simulated-annealing-based funneled approach for the prediction of cation ordering in mixed transition-metal oxide materials, J. Phys. Chem. C, 124(2020), No. 50, p. 27366. doi: 10.1021/acs.jpcc.0c08579
|
[28] |
S.B. Roshan, M.B. Jooibari, R. Teimouri, G. Asgharzadeh-Ahmadi, M. Falahati-Naghibi, and H. Sohrabpoor, Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm, Int. J. Adv. Manuf. Technol., 69(2013), No. 5-8, p. 1803. doi: 10.1007/s00170-013-5131-6
|
[29] |
N. Chakraborti, R. Sreevathsan, R. Jayakanth, and B. Bhattacharya, Tailor-made material design: An evolutionary approach using multi-objective genetic algorithms, Comput. Mater. Sci., 45(2009), No. 1, p. 1. doi: 10.1016/j.commatsci.2008.03.057
|
[30] |
R. Sreevathsan, B. Bhattacharya, and N. Chakraborti, Designing ionic materials through multiobjective genetic algorithms, Mater. Manuf. Processes, 24(2009), No. 2, p. 162.
|
[31] |
T.D. Liu, L.Y. Xu, G.F. Shao, N.N. Tu, J.P. Tao, and Y.H. Wen, Structural optimization of Pt–Pd–Rh trimetallic nanoparticles using improved genetic algorithm, J. Alloys Compd., 663(2016), p. 466. doi: 10.1016/j.jallcom.2015.12.146
|
[32] |
C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, and J.X. Xie, A property-oriented design strategy for high performance copper alloys via machine learning, npj Comput. Mater., 5(2019), art. No. 87. doi: 10.1038/s41524-019-0227-7
|
[33] |
Y.J. Su, H.D. Fu, Y. Bai, X. Jiang, and J.X. Xie, Progress in materials genome engineering in China, Acta Metall. Sin., 56(2020), No. 10, p. 1313.
|
[34] |
L. Jiang, C.S. Wang, H.D. Fu, J. Shen, Z.H. Zhang, and J.X. Xie, Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy, J. Mater. Sci. Technol., 98(2022), p. 33. doi: 10.1016/j.jmst.2021.05.011
|
[35] |
H.X. Zong, G. Pilania, X.D. Ding, G.J. Ackland, and T. Lookman, Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning, npj Comput. Mater., 4(2018), art. No. 48. doi: 10.1038/s41524-018-0103-x
|
[36] |
K. Tsutsui, H. Terasaki, T. Maemura, K. Hayashi, K. Moriguchi, and S. Morito, Microstructural diagram for steel based on crystallography with machine learning, Comput. Mater. Sci., 159(2019), p. 403. doi: 10.1016/j.commatsci.2018.12.003
|
[37] |
S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300. doi: 10.1016/j.matdes.2018.11.060
|
[38] |
L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, npj Comput. Mater., 2(2016), art. No. 16028. doi: 10.1038/npjcompumats.2016.28
|
[39] |
L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, and C. Wolverton, A machine learning approach for engineering bulk metallic glass alloys, Acta Mater., 159(2018), p. 102. doi: 10.1016/j.actamat.2018.08.002
|
[40] |
N. Islam, W.J. Huang, and H.L. Zhuang, Machine learning for phase selection in multi-principal element alloys, Comput. Mater. Sci., 150(2018), p. 230. doi: 10.1016/j.commatsci.2018.04.003
|
[41] |
P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM Int., Ohio, 1991.
|
[42] |
R.H. Yuan, D.Q. Xue, D.Z. Xue, J.S. Li, X.D. Ding, J. Sun, and T. Lookman, Knowledge-based descriptor for the compositional dependence of the phase transition in BaTiO3-based ferroelectrics, ACS Appl. Mater. Interfaces, 12(2020), No. 40, p. 44970. doi: 10.1021/acsami.0c12763
|
[43] |
S.Z. Li, H.R. Zhang, D.B. Dai, G.T. Ding, X. Wei, and Y.K. Guo, Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning, J. Alloys Compd., 782(2019), p. 110. doi: 10.1016/j.jallcom.2018.12.136
|
[44] |
Z.C. Lu, X. Chen, X.J. Liu, D.Y. Lin, Y. Wu, Y.B. Zhang, H. Wang, S.H. Jiang, H.X. Li, X.Z. Wang, and Z.P. Lu, Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, npj Comput. Mater., 6(2020), art. No. 187. doi: 10.1038/s41524-020-00460-x
|
[45] |
K. Kaufmann and K.S. Vecchio, Searching for high entropy alloys: A machine learning approach, Acta Mater., 198(2020), p. 178. doi: 10.1016/j.actamat.2020.07.065
|
[46] |
V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine learning modeling of superconducting critical temperature, npj Comput. Mater., 4(2018), art. No. 29. doi: 10.1038/s41524-018-0085-8
|
[47] |
H. Wu, A. Lorenson, B. Anderson, L. Witteman, H.T. Wu, B. Meredig, and D. Morgan, Robust FCC solute diffusion predictions from ab-initio machine learning methods, Comput. Mater. Sci., 134(2017), p. 160. doi: 10.1016/j.commatsci.2017.03.052
|
[48] |
S. Kirklin, J.E. Saal, V.I. Hegde, and C. Wolverton, High-throughput computational search for strengthening precipitates in alloys, Acta Mater., 102(2016), p. 125. doi: 10.1016/j.actamat.2015.09.016
|
[49] |
Y. Zhang, C. Wen, C.X. Wang, S. Antonov, D.Z. Xue, Y. Bai, and Y.J. Su, Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models, Acta Mater., 185(2020), p. 528. doi: 10.1016/j.actamat.2019.11.067
|
[50] |
Z.Q. Zhou, Y.J. Zhou, Q.F. He, Z.Y. Ding, F.C. Li, and Y. Yang, Machine learning guided appraisal and exploration of phase design for high entropy alloys, npj Comput. Mater., 5(2019), art. No. 128. doi: 10.1038/s41524-019-0265-1
|
[51] |
J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, and G. Balasubramanian, Materials informatics for the screening of multi-principal elements and high-entropy alloys, Nat. Commun., 10(2019), art. No. 2618. doi: 10.1038/s41467-019-10533-1
|
[52] |
X.M. Wang, Y.L. Xu, J. Yang, J.Y. Ni, W. Zhang, and W.H. Zhu, ThermoEPred-EL: Robust bandgap predictions of chalcogenides with diamond-like structure via feature cross-based stacked ensemble learning, Comput. Mater. Sci., 169(2019), art. No. 109117. doi: 10.1016/j.commatsci.2019.109117
|
[53] |
D.B. Dai, T. Xu, X. Wei, G.T. Ding, Y. Xu, J.C. Zhang, and H.R. Zhang, Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Comput. Mater. Sci., 175(2020), art. No. 109618. doi: 10.1016/j.commatsci.2020.109618
|
[54] |
J. Benesty, J.D. Chen, Y.T. Huang, and I. Cohen, Noise Reduction in Speech Processing, Springer, Berlin, Heidelberg, 2009.
|
[55] |
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58(1996), No. 1, p. 267.
|
[56] |
P.M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products, Chemom. Intell. Lab. Syst., 83(2006), No. 2, p. 83. doi: 10.1016/j.chemolab.2006.01.007
|
[57] |
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn., 46(2002), p. 389. doi: 10.1023/A:1012487302797
|
[58] |
Y. Liu, J.M. Wu, M. Avdeev, and S.Q. Shi, Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties, Adv. Theor. Simul., 3(2020), No. 2, art. No. 1900215. doi: 10.1002/adts.201900215
|
[59] |
H.T. Zhang, H.D. Fu, X.Q. He, C.S. Wang, L. Jiang, L.Q. Chen, and J.X. Xie, Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803. doi: 10.1016/j.actamat.2020.09.068
|
[60] |
J.W. Yeh, Recent progress in high-entropy alloys, Eur. J. Control, 31(2006), No. 6, p. 633.
|
[61] |
C. Wen, C.X. Wang, Y. Zhang, S. Antonov, D.Z. Xue, T. Lookman, and Y.J. Su, Modeling solid solution strengthening in high entropy alloys using machine learning, Acta Mater., 212(2021), art. No. 116917. doi: 10.1016/j.actamat.2021.116917
|
[62] |
H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118. doi: 10.1016/j.actamat.2021.117118
|
[63] |
D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), art. No. 11241. doi: 10.1038/ncomms11241
|
[64] |
D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, and T. Lookman, An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532. doi: 10.1016/j.actamat.2016.12.009
|
[65] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, and Y.J. Su, Machine learning assisted design of high entropy alloys with desired property, Acta Mater., 170(2019), p. 109. doi: 10.1016/j.actamat.2019.03.010
|
[66] |
Y.W. Liu, L.Y. Wang, H. Zhang, G.M. Zhu, J. Wang, Y.H. Zhang, and X.Q. Zeng, Accelerated development of high-strength magnesium alloys by machine learning, Metall. Mater. Trans. A, 52(2021), No. 3, p. 943. doi: 10.1007/s11661-020-06132-1
|
[67] |
H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 2022. DOI: 10.1007/s12613-022-2479-3
|