Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 807-813. https://doi.org/10.1007/s12613-022-2460-1
Cite this article as:
Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 807-813. https://doi.org/10.1007/s12613-022-2460-1
Research Article

Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation

+ Author Affiliations
  • Corresponding author:

    Yuan Wu    E-mail: wuyuan@ustb.edu.cn

  • Received: 12 January 2022Revised: 24 February 2022Accepted: 3 March 2022Available online: 4 March 2022
  • The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity (TRIP)-reinforced bulk metallic glass (BMG) composite under compressive loading were investigated by employing the digital image correlation (DIC) technique. The evolution of local strain field in the crystalline phase and the amorphous matrix was directly monitored, and the contribution from the phase transformation of the metastable austenitic phase was revealed. Local shear strain was found to be effectively consumed by the displacive phase transformation of the metastable austenitic phase, which relaxed the local strain/stress concentration at the interface and thus greatly enhanced the plasticity of the TRIP-reinforced BMG composites. Our current study sheds light on in-depth understanding of the underlying deformation mechanism and the interplay between the amorphous matrix and the metastable crystalline phase during deformation, which is helpful for design of advanced BMG composites with further improved properties.
  • loading
  • [1]
    W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(2012), No. 3, p. 487. doi: 10.1016/j.pmatsci.2011.07.001
    [2]
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater., 55(2007), No. 12, p. 4067. doi: 10.1016/j.actamat.2007.01.052
    [3]
    Y. Yang, J.C. Ye, J. Lu, Y.F. Gao, and P.K. Liaw, Metallic glasses: Gaining plasticity for microsystems, JOM, 62(2010), No. 2, p. 93. doi: 10.1007/s11837-010-0039-1
    [4]
    Y.W. Wang, M. Li, and J.W. Xu, Toughen and harden metallic glass through designing statistical heterogeneity, Scripta Mater., 113(2016), p. 10. doi: 10.1016/j.scriptamat.2015.09.038
    [5]
    Z.F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(2003), No. 4, p. 1167. doi: 10.1016/S1359-6454(02)00521-9
    [6]
    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451(2008), No. 7182, p. 1085. doi: 10.1038/nature06598
    [7]
    Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, and Z.P. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility, Adv. Mater., 22(2010), No. 25, p. 2770. doi: 10.1002/adma.201000482
    [8]
    P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M.S. Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, and J. Eckert, Ti−Cu−Ni shape memory bulk metallic glass composites, Acta Mater., 61(2013), No. 1, p. 151. doi: 10.1016/j.actamat.2012.09.042
    [9]
    Z.Y. Zhang, Y. Wu, J. Zhou, W.L. Song, D. Cao, H. Wang, X.J. Liu, and Z.P. Lu, Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites, Intermetallics, 42(2013), p. 68. doi: 10.1016/j.intermet.2013.05.009
    [10]
    F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, and G. Wang, ZrCu-based bulk metallic glass composites with large strain-hardening capability, Mater. Sci. Eng. A, 636(2015), p. 502. doi: 10.1016/j.msea.2015.04.027
    [11]
    Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, and Z.P. Lu, Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties, Acta Mater., 59(2011), No. 8, p. 2928. doi: 10.1016/j.actamat.2011.01.029
    [12]
    W.L. Song, Y. Wu, H. Wang, X.J. Liu, H.W. Chen, Z.X. Guo, and Z.P. Lu, Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites, Adv. Mater., 28(2016), No. 37, p. 8156. doi: 10.1002/adma.201601954
    [13]
    S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites, Acta Mater., 57(2009), No. 18, p. 5445. doi: 10.1016/j.actamat.2009.07.042
    [14]
    C.P. Kim, Y.S. Oh, S. Lee, and N.J. Kim, Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation, Scripta Mater., 65(2011), No. 4, p. 304. doi: 10.1016/j.scriptamat.2011.04.037
    [15]
    Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li, and Z.P. Lu, Transformation-induced plasticity in bulk metallic glass composites evidenced by in situ neutron diffraction, Acta Mater., 124(2017), p. 478. doi: 10.1016/j.actamat.2016.11.029
    [16]
    T.C. Chu, W.F. Ranson, and M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech., 25(1985), No. 3, p. 232. doi: 10.1007/BF02325092
    [17]
    N. Li, M.A. Sutton, X. Li, and H.W. Schreier, Full-field thermal deformation measurements in a scanning electron microscope by 2D digital image correlation, Exp. Mech., 48(2008), No. 5, p. 635. doi: 10.1007/s11340-007-9107-z
    [18]
    B. Pan, K.M. Qian, H.M. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review, Meas. Sci. Technol., 20(2009), No. 6, art. No. 062001. doi: 10.1088/0957-0233/20/6/062001
    [19]
    P. Bing, Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals, Meas. Sci. Technol., 29(2018), No. 8, art. No. 082001. doi: 10.1088/1361-6501/aac55b
    [20]
    J. Zhang, P. Aimedieu, F. Hild, S. Roux, and T. Zhang, Complexity of shear localization in a Zr-based bulk metallic glass, Scripta Mater., 61(2009), No. 12, p. 1145. doi: 10.1016/j.scriptamat.2009.08.041
    [21]
    Y. Wu, H. Bei, Y.L. Wang, Z.P. Lu, E.P. George, and Y.F. Gao, Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass, Int. J. Plast., 71(2015), p. 136. doi: 10.1016/j.ijplas.2015.05.006
    [22]
    S.H. Hong, J.T. Kim, H.J. Park, J.Y. Suh, K.R. Lim, Y.S. Na, J.M. Park, and K.B. Kim, Work-hardening and plastic deformation behavior of Ti-based bulk metallic glass composites with bimodal sized B2 particles, Intermetallics, 62(2015), p. 36. doi: 10.1016/j.intermet.2015.03.005
    [23]
    M.W. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, Annu. Rev. Mater. Res., 38(2008), p. 445. doi: 10.1146/annurev.matsci.38.060407.130226
    [24]
    D. Schryvers, G.S. Firstov, J.W. Seo, J.V. Humbeeck, and Y.N. Koval, Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction, Scripta Mater., 36(1997), No. 10, p. 1119. doi: 10.1016/S1359-6462(97)00003-1
    [25]
    J.W. Seo and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems, Acta Mater., 46(1998), No. 4, p. 1165. doi: 10.1016/S1359-6454(97)00333-9
    [26]
    A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279. doi: 10.1016/S1359-6454(99)00300-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(4596) PDF Downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return