Cite this article as: |
Mei Yang, Ruyi Bi, Jiangyan Wang, Ranbo Yu, and Dan Wang, Decoding lithium batteries through advanced in situcharacterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 965-989. https://doi.org/10.1007/s12613-022-2461-0 |
Jiangyan Wang E-mail: jywang@ipe.ac.cn
Ranbo Yu E-mail: ranboyu@ustb.edu.cn
Dan Wang E-mail: danwang@ipe.ac.cn
[1] |
E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, and Y. Gogotsi, Energy storage: The future enabled by nanomaterials, Science, 366(2019), No. 6468, p. 969.
|
[2] |
Z.Y. Gu, J.Z. Guo, X.X. Zhao, et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat, 3(2021), No. 6, p. 694. doi: 10.1002/inf2.12184
|
[3] |
X.X. Luo, W.H. Li, H.J. Liang, et al., Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries, Angew. Chem. Int. Ed., 61(2022), No. 10, art. No. e202117661.
|
[4] |
J. Yang, Y.H. Lin, B.S. Guo, et al., Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
|
[5] |
D.C. Lin, Y.Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12(2017), No. 3, p. 194. doi: 10.1038/nnano.2017.16
|
[6] |
E.H.M. Salhabi, J.L. Zhao, J.Y. Wang, M. Yang, B. Wang, and D. Wang, Hollow multi-shelled structural TiO2–x with multiple spatial confinement for long-life lithium–sulfur batteries, Angew. Chem. Int. Ed., 58(2019), No. 27, p. 9078. doi: 10.1002/anie.201903295
|
[7] |
Q. Jiang, W.Q. Zhang, J.C. Zhao, P. H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
|
[8] |
Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
|
[9] |
T. Fujita, H. Chen, K.T. Wang, et al., Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
|
[10] |
L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
|
[11] |
J. Lu, T. Wu, and K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries, Nat. Energy, 2(2017), art. No. 17011. doi: 10.1038/nenergy.2017.11
|
[12] |
J. Cui, H.K. Zheng, and K. He, In situ TEM study on conversion-type electrodes for rechargeable ion batteries, Adv. Mater., 33(2021), No. 6, art. No. e2000699. doi: 10.1002/adma.202000699
|
[13] |
F. Lin, Y.J. Liu, X.Q. Yu, et al., Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries, Chem. Rev., 117(2017), No. 21, p. 13123. doi: 10.1021/acs.chemrev.7b00007
|
[14] |
S.Y. Lang, Y. Shi, Y.G. Guo, D. Wang, R. Wen, and L.J. Wan, Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study, Angew. Chem. Int. Ed., 55(2016), No. 51, p. 15835. doi: 10.1002/anie.201608730
|
[15] |
R. Baddour-Hadjean and J.P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries, Chem. Rev., 110(2010), No. 3, p. 1278. doi: 10.1021/cr800344k
|
[16] |
R. Tao, J.G. Zhu, Y.F. Zhang, W.L. Song, H.S. Chen, and D.N. Fang, Quantifying the 2D anisotropic displacement and strain fields in graphite-based electrode via in situ scanning electron microscopy and digital image correlation, Extreme Mech. Lett., 35(2020), art. No. 100635. doi: 10.1016/j.eml.2020.100635
|
[17] |
S.M. Bak, Z. Shadike, R.Q. Lin, X.Q. Yu, and X.Q. Yang, In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research, NPG Asia Mater., 10(2018), No. 7, p. 563. doi: 10.1038/s41427-018-0056-z
|
[18] |
V.R. Rikka, S.R. Sahu, A. Chatterjee, et al., In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries, J. Phys. Chem. C, 122(2018), No. 50, p. 28717. doi: 10.1021/acs.jpcc.8b09210
|
[19] |
Y. Yamagishi, H. Morita, Y. Nomura, and E. Igaki, Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry, ACS Appl. Mater. Interfaces, 13(2021), No. 1, p. 580. doi: 10.1021/acsami.0c18505
|
[20] |
A.I. Freytag, A.D. Pauric, S.A. Krachkovskiy, and G.R. Goward, In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design, J. Am. Chem. Soc., 141(2019), No. 35, p. 13758. doi: 10.1021/jacs.9b06885
|
[21] |
E.Y. Zhao, Z.G. Zhang, X.Y. Li, L.H. He, X.Q. Yu, H. Li, and F.W. Wang, Neutron-based characterization techniques for lithium-ion battery research, Chin. Phys. B, 29(2020), No. 1, art. No. 018201. doi: 10.1088/1674-1056/ab5d07
|
[22] |
Z. Deng, X. Lin, Z.Y. Huang, J.T. Meng, Y. Zhong, G.T. Ma, Y. Zhou, Y. Shen, H. Ding, and Y.H. Huang, Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000806. doi: 10.1002/aenm.202000806
|
[23] |
B.H. Song, G.M. Veith, J. Park, M. Yoon, P.S. Whitfield, M.J. Kirkham, J. Liu, and A. Huq, Metastable Li1+δMn2O4 (0≤δ≤1) spinel phases revealed by in operando neutron diffraction and first-principles calculations, Chem. Mater., 31(2019), No. 1, p. 124. doi: 10.1021/acs.chemmater.8b03199
|
[24] |
Y.P. Han, D.J. Chen, S. Ali, C. Feng, F.P. Meng, M. Waqas, and W.D. He, Hierarchical self-supported carbon nanostructure enables superior stability of highly nitrogen-doped anodes, ChemElectroChem, 7(2020), No. 18, p. 3883. doi: 10.1002/celc.202001005
|
[25] |
K. Hongyou, T. Hattori, Y. Nagai, T. Tanaka, H. Nii, and K. Shoda, Dynamic in situ Fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery, J. Power Sources, 243(2013), p. 72. doi: 10.1016/j.jpowsour.2013.05.192
|
[26] |
F. Rittweger, C. Modrzynski, V. Roscher, D.L. Danilov, P.H.L. Notten, and K.R. Riemschneider, Investigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation, J. Power Sources, 482(2021), art. No. 228943. doi: 10.1016/j.jpowsour.2020.228943
|
[27] |
H. Wu, D. Zhuo, D. Kong, and Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator, Nat. Commun., 5(2014), art. No. 5193. doi: 10.1038/ncomms6193
|
[28] |
Y.C. Hsieh, J.H. Thienenkamp, C.J. Huang et al., Revealing the impact of film-forming electrolyte additives on lithium metal batteries via solid-state NMR/MRI analysis, J. Phys. Chem. C, 125(2021), No. 1, p. 252. doi: 10.1021/acs.jpcc.0c09771
|
[29] |
J. Wandt, P. Jakes, J. Granwehr, R.A. Eichel, and H.A. Gasteiger, Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries, Mater. Today, 21(2018), No. 3, p. 231. doi: 10.1016/j.mattod.2017.11.001
|
[30] |
R. Sakuma, H. Hashimoto, T. Fujii, J. Takada, N. Hayashi, and M. Takano, In situ Mössbauer analysis of bacterial iron-oxide nano-particles for lithium-ion battery, Hyperfine Interact., 240(2019), No. 1, art. No. 80. doi: 10.1007/s10751-019-1639-y
|
[31] |
N. Balke, S. Kalnaus, N.J. Dudney, C. Daniel, S. Jesse, and S.V. Kalinin, Local detection of activation energy for ionic transport in lithium cobalt oxide, Nano Lett., 12(2012), No. 7, p. 3399. doi: 10.1021/nl300219g
|
[32] |
A.L. Lipson, R.S. Ginder, and M.C. Hersam, Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy, Adv. Mater., 23(2011), No. 47, p. 5613. doi: 10.1002/adma.201103094
|
[33] |
K. Luo, M.R. Roberts, R. Hao, et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen, Nat. Chem., 8(2016), No. 7, p. 684. doi: 10.1038/nchem.2471
|
[34] |
J.J. Wang, Y.C.K. Chen-Wiegart, and J. Wang, In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy, Nat. Commun., 5(2014), art. No. 4570. doi: 10.1038/ncomms5570
|
[35] |
S. Pérez-Villar, P. Lanz, H. Schneider, and P. Novák, Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy, Electrochim. Acta, 106(2013), p. 506. doi: 10.1016/j.electacta.2013.05.124
|
[36] |
B. Tsuchiya, J. Ohnishi, Y. Sasaki, et al., In situ direct lithium distribution analysis around interfaces in an all-solid-state rechargeable lithium battery by combined ion-beam method, Adv. Mater. Interfaces, 6(2019), No. 14, art. No. 1900100. doi: 10.1002/admi.201900100
|
[37] |
J.K. Zhu, H.H. Shen, X.B. Shi, et al., Revealing the chemical and structural evolution of V2O5 nanoribbons in lithium-ion batteries using in situ transmission electron microscopy, Anal. Chem., 91(2019), No. 17, p. 11055. doi: 10.1021/acs.analchem.9b01571
|
[38] |
R. Schmidt, H. Fitzek, M. Nachtnebel, C. Mayrhofer, H. Schroettner, and A. Zankel, The combination of electron microscopy, Raman microscopy and energy dispersive X-ray spectroscopy for the investigation of polymeric materials, Macromol. Symp., 384(2019), No. 1, art. No. 1800237. doi: 10.1002/masy.201800237
|
[39] |
L.Q. Zhang, T.T. Yang, C.C. Du, et al., Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up, Nat. Nanotechnol., 15(2020), No. 2, p. 94. doi: 10.1038/s41565-019-0604-x
|
[40] |
O.J. Borkiewicz, B. Shyam, K.M. Wiaderek, C. Kurtz, P.J. Chupas, and K.W. Chapman, The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements, J. Appl. Crystallogr., 45(2012), No. 6, p. 1261. doi: 10.1107/S0021889812042720
|
[41] |
L. Vitoux, M. Reichardt, S. Sallard, P. Novák, D. Sheptyakov, and C. Villevieille, A cylindrical cell for operando neutron diffraction of Li-ion battery electrode materials, Front. Energy Res., 6(2018), art. No. 76. doi: 10.3389/fenrg.2018.00076
|
[42] |
C. Ghanty, B. Markovsky, E.M. Erickson, et al., Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2(0.005<x<0.03; y:z = 8:1, w ≈ 1) electrodes: In situ XRD and Raman spectroscopy study, ChemElectroChem, 2(2015), No. 10, p. 1479. doi: 10.1002/celc.201500160
|
[43] |
F. Poli, J.S. Kshetrimayum, L. Monconduit, and M. Letellier, New cell design for in situ NMR studies of lithium-ion batteries, Electrochem. Commun., 13(2011), No. 12, p. 1293. doi: 10.1016/j.elecom.2011.07.019
|
[44] |
M. Gu, L.R. Parent, B.L. Mehdi, et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes, Nano Lett., 13(2013), No. 12, p. 6106. doi: 10.1021/nl403402q
|
[45] |
X. Zhou, T. Li, Y. Cui, Y. Fu, Y. Liu, and L. Zhu, In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 2, p. 1733. doi: 10.1021/acsami.8b13981
|
[46] |
J. Steiger, D. Kramer, and R. Mönig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochim. Acta, 136(2014), p. 529. doi: 10.1016/j.electacta.2014.05.120
|
[47] |
A.M. Tripathi, W.N. Su, and B.J. Hwang, In situ analytical techniques for battery interface analysis, Chem. Soc. Rev., 47(2018), No. 3, p. 736. doi: 10.1039/C7CS00180K
|
[48] |
M. Sathiya, G. Rousse, K. Ramesha, et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes, Nat. Mater., 12(2013), No. 9, p. 827. doi: 10.1038/nmat3699
|
[49] |
P. Lanz, C. Villevieille, and P. Novák, Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, Mn), Electrochim. Acta, 130(2014), p. 206. doi: 10.1016/j.electacta.2014.03.004
|
[50] |
X. Cao, H.F. Li, Y. Qiao, M. Jia, P. He, J. Cabana, and H.S. Zhou, Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy, Energy Storage Mater., 38(2021), p. 1. doi: 10.1016/j.ensm.2021.02.047
|
[51] |
L.N. Zhou, M. Leskes, T. Liu, and C.P. Grey, Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes, Angew. Chem. Int. Ed., 54(2015), No. 49, p. 14782. doi: 10.1002/anie.201507632
|
[52] |
W.M. Seong, K.H. Cho, J.W. Park, et al., Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 42, p. 18662. doi: 10.1002/anie.202007436
|
[53] |
R. Jung, F. Linsenmann, R. Thomas, et al., Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells, J. Electrochem. Soc., 166(2019), No. 2, art. No. A378. doi: 10.1149/2.1151902jes
|
[54] |
S. Li, Z.P. Yao, J.M. Zheng, et al., Direct observation of defect-aided structural evolution in a nickel-rich layered cathode, Angew. Chem. Int. Ed., 59(2020), No. 49, p. 22092. doi: 10.1002/anie.202008144
|
[55] |
L.J. Jia, J. Wang, S.Y. Ren, et al., Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization, Energy Environ. Mater., 4(2021), No. 2, p. 222. doi: 10.1002/eem2.12152
|
[56] |
X.C. Liu, Y. Yang, J.J. Wu, et al., Dynamic hosts for high-performance Li–S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction, ACS Energy Lett., 3(2018), No. 6, p. 1325. doi: 10.1021/acsenergylett.8b00561
|
[57] |
J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, and C. Villevieille, Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction, Nat. Energy, 2(2017), No. 6, art. No. 17069. doi: 10.1038/nenergy.2017.69
|
[58] |
H.L. Wu, L.A. Huff, and A.A. Gewirth, In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 3, p. 1709. doi: 10.1021/am5072942
|
[59] |
Z.F. Wang, Y.F. Tang, L.Q. Zhang, M. Li, Z.W. Shan, and J.Y. Huang, In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures, Small, 16(2020), No. 28, art. No. 2001899. doi: 10.1002/smll.202001899
|
[60] |
J.Y. Wang, H.J. Tang, H. Wang, R.B. Yu, and D. Wang, Multi-shelled hollow micro-/ nanostructures: Promising platforms for lithium-ion batteries, Mater. Chem. Front., 1(2017), No. 3, p. 414. doi: 10.1039/C6QM00273K
|
[61] |
D.Q. Liu, Z. Shadike, R.Q. Lin, et al., Review of recent development of in situ/operando characterization techniques for lithium battery research, Adv. Mater., 31(2019), No. 28, art. No. 1806620. doi: 10.1002/adma.201806620
|
[62] |
D.W. Li, Y.K. Wang, B. Lu, and J.Q. Zhang, Real-time measurements of electro-mechanical coupled deformation and mechanical properties of commercial graphite electrodes, Carbon, 169(2020), p. 258. doi: 10.1016/j.carbon.2020.07.072
|
[63] |
R.D. Ding, Y.L. Huang, G.X. Li, Q. Liao, T. Wei, Y. Liu, Y.J. Huang, and H. He, Carbon anode materials for rechargeable alkali metal ion batteries and in situ characterization techniques, Front. Chem., 8(2020), art. No. 607504. doi: 10.3389/fchem.2020.607504
|
[64] |
S. Schweidler, L.d. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(2018), No. 16, p. 8829. doi: 10.1021/acs.jpcc.8b01873
|
[65] |
Y.H. Li, R.T. Zheng, H.X. Yu, et al., Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 25, p. 22429. doi: 10.1021/acsami.9b05841
|
[66] |
W.K. Pang, V.K. Peterson, N. Sharma, J.J. Shiu, and S.H. Wu, Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction, Chem. Mater., 26(2014), No. 7, p. 2318. doi: 10.1021/cm5002779
|
[67] |
K. He, S. Zhang, J. Li, et al., Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy, Nat. Commun., 7(2016), art. No. 11441. doi: 10.1038/ncomms11441
|
[68] |
K. He, Y.F. Yuan, W.T. Yao, et al., Atomistic insights of irreversible Li+ intercalation in MnO2 electrode, Angew. Chem. Int. Ed., 61(2022), No. 2, art. No. e202113420.
|
[69] |
B. Song, P. Loya, L.L. Shen, et al., Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications, Nano Energy, 53(2018), p. 277. doi: 10.1016/j.nanoen.2018.08.057
|
[70] |
K. Kitada, O. Pecher, P.C.M.M. Magusin, M.F. Groh, R.S. Weatherup, and C.P. Grey, Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy, J. Am. Chem. Soc., 141(2019), No. 17, p. 7014. doi: 10.1021/jacs.9b01589
|
[71] |
Z.Y. Feng, W.J. Peng, Z.X. Wang, H.J. Guo, X.H. Li, G.C. Yan, and J.X. Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
|
[72] |
J.L. Zhao, J.Y. Wang, R.Y. Bi, et al., General synthesis of multiple-cores@multiple-shells hollow composites and their application to lithium-ion batteries, Angew. Chem. Int. Ed., 60(2021), No. 49, p. 25719. doi: 10.1002/anie.202110982
|
[73] |
D.X. Liu, J.H. Wang, K. Pan, et al., In situ quantification and visualization of lithium transport with neutrons, Angew. Chem., 126(2014), No. 36, p. 9652. doi: 10.1002/ange.201404197
|
[74] |
T.Y. Li, X.W. Zhou, Y. Cui, et al., In-situ characterization of dynamic morphological and phase changes of selenium-doped germanium using a single particle cell and synchrotron transmission X-ray microscopy, ChemSusChem, 14(2021), No. 5, p. 1370. doi: 10.1002/cssc.202002776
|
[75] |
J.H. Um and S.H. Yu, Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques, Adv. Energy Mater., 11(2021), No. 27, art. No. 2003004. doi: 10.1002/aenm.202003004
|
[76] |
Q. Li, T.C. Yi, X.L. Wang, et al., In-situ visualization of lithium plating in all-solid-state lithium-metal battery, Nano Energy, 63(2019), art. No. 103895. doi: 10.1016/j.nanoen.2019.103895
|
[77] |
S.H. Yu, X. Huang, J.D. Brock, and H.D. Abruña, Regulating key variables and visualizing lithium dendrite growth: An operando X-ray study, J. Am. Chem. Soc., 141(2019), No. 21, p. 8441. doi: 10.1021/jacs.8b13297
|
[78] |
Y.Z. Li, Y.B. Li, A. Pei, et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy, Science, 358(2017), No. 6362, p. 506. doi: 10.1126/science.aam6014
|
[79] |
A.B. Gunnarsdóttir, C.V. Amanchukwu, S. Menkin, and C.P. Grey, Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries, J. Am. Chem. Soc., 142(2020), No. 49, p. 20814. doi: 10.1021/jacs.0c10258
|
[80] |
X.J. Zeng, D.Q. Liu, S.W. Wang, S. Liu, X.K. Cai, L.H. Zhang, R. Zhao, B.H. Li, and F.Y. Kang, In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy, ACS Appl. Mater. Interfaces, 12(2020), No. 33, p. 37047. doi: 10.1021/acsami.0c07250
|
[81] |
L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
|
[82] |
T.C. Liu, L.P. Lin, X.X. Bi, et al., In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol., 14(2019), No. 1, p. 50. doi: 10.1038/s41565-018-0284-y
|
[83] |
C. Hou, J.H. Han, P. Liu, et al., Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902675. doi: 10.1002/aenm.201902675
|
[84] |
Y.X. Song, Y. Shi, J. Wan, B. Liu, L.J. Wan, and R. Wen, Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000465. doi: 10.1002/aenm.202000465
|
[85] |
D.C. Chen, M.A. Mahmoud, J.H. Wang, et al., Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery, Nano Lett., 19(2019), No. 3, p. 2037. doi: 10.1021/acs.nanolett.9b00179
|
[86] |
L.M. Suo, Z. Fang, Y.S. Hu, and L.Q. Chen, FT-Raman spectroscopy study of solvent-in-salt electrolytes, Chin. Phys. B, 25(2016), No. 1, art. No. 016101. doi: 10.1088/1674-1056/25/1/016101
|
[87] |
C.Y. Li, Y. Yu, C. Wang, et al., Surface changes of LiNixMnyCo1–x–yO2 in Li-ion batteries using in situ surface-enhanced Raman spectroscopy, J. Phys. Chem. C, 124(2020), No. 7, p. 4024. doi: 10.1021/acs.jpcc.9b11677
|
[88] |
Y.R. Zhang, Y. Katayama, R. Tatara, et al., Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy, Energy Environ. Sci., 13(2020), No. 1, p. 183. doi: 10.1039/C9EE02543J
|
[89] |
F. Wohde, R. Bhandary, J.M. Moldrickx, J. Sundermeyer, M. Schönhoff, and B. Roling, Li+ ion transport in ionic liquid-based electrolytes and the influence of sulfonate-based zwitterion additives, Solid State Ion., 284(2016), p. 37. doi: 10.1016/j.ssi.2015.11.017
|
[90] |
J.D. Forster, S.J. Harris, and J.J. Urban, Mapping Li+ concentration and transport via in situ confocal Raman microscopy, J. Phys. Chem. Lett., 5(2014), No. 11, p. 2007. doi: 10.1021/jz500608e
|
[91] |
C.J. Jafta, X.G. Sun, G.M. Veith, et al., Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering, Energy Environ. Sci., 12(2019), No. 6, p. 1866. doi: 10.1039/C8EE02703J
|
[92] |
C.S. Jiang, Y. Yin, H. Guthrey, K. Park, S.H. Lee, and M.M. Al-Jassim, Local electrical degradations of solid-state electrolyte by nm-scale operando imaging of ionic and electronic transports, J. Power Sources, 481(2021), art. No. 229138. doi: 10.1016/j.jpowsour.2020.229138
|
[93] |
H.J. Liang, B.H. Hou, W.H. Li, et al., Staging Na/K-ion de-/ intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries, Energy Environ. Sci., 12(2019), No. 12, p. 3575. doi: 10.1039/C9EE02759A
|
[94] |
A. Schiele, T. Hatsukade, B.B. Berkes, P. Hartmann, T. Brezesinski, and J. Janek, High-throughput in situ pressure analysis of lithium-ion batteries, Anal. Chem., 89(2017), No. 15, p. 8122. doi: 10.1021/acs.analchem.7b01760
|
[95] |
B. Michalak, B.B. Berkes, H. Sommer, T. Bergfeldt, T. Brezesinski, and J. Janek, Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements, Anal. Chem., 88(2016), No. 5, p. 2877. doi: 10.1021/acs.analchem.5b04696
|
[96] |
B. Gerelt-Od, J. Kim, E. Shin, et al., In situ Raman investigation of resting thermal effects on gas emission in charged commercial 18650 lithium ion batteries, J. Ind. Eng. Chem., 96(2021), p. 339. doi: 10.1016/j.jiec.2021.01.039
|
[97] |
X. Teng, C. Zhan, Y. Bai, et al., In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes, ACS Appl. Mater. Interfaces, 7(2015), No. 41, p. 22751. doi: 10.1021/acsami.5b08399
|
[98] |
J. Vetter, M. Holzapfel, A. Wuersig, W. Scheifele, J. Ufheil, and P. Novák, In situ study on CO2 evolution at lithium-ion battery cathodes, J. Power Sources, 159(2006), No. 1, p. 277. doi: 10.1016/j.jpowsour.2006.04.087
|
[99] |
Z.Q. Zeng, X.W. Liu, X.Y. Jiang, et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte, InfoMat, 2(2020), No. 5, p. 984. doi: 10.1002/inf2.12089
|
[100] |
Z.Y. Yu, Y. Shao, L.P. Ma, et al., Revealing the sulfur redox paths in a Li–S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry, Adv. Mater., 34(2022), No. 7, art. No. 2106618. doi: 10.1002/adma.202106618
|