Cite this article as: |
Jinxiao Yang, Xudong Wang, Yiren Cai, and Xiuyu Yang, Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 653-659. https://doi.org/10.1007/s12613-022-2463-y |
Xudong Wang E-mail: xdwang@ustb.edu.cn
[1] |
T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnes. Alloys, 7(2019), No. 3, p. 536. doi: 10.1016/j.jma.2019.08.001
|
[2] |
V. Badisha, S. Shaik, R. Dumpala, and B.R. Sunil, Developing Mg–Zn surface alloy by friction surface allosying: in vitro degradation studies in simulated body fluids, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 962. doi: 10.1007/s12613-020-2053-9
|
[3] |
J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
|
[4] |
G.Z. Zhang, S.Y. Qin, L.G. Yan, and X.F. Zhang, Simultaneous improvement of electromagnetic shielding effectiveness and corrosion resistance in magnesium alloys by electropulsing, Mater. Charact., 174(2021), art. No. 111042. doi: 10.1016/j.matchar.2021.111042
|
[5] |
Y.J. Tarzanagh, D. Seifzadeh, and R. Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 536. doi: 10.1007/s12613-021-2251-0
|
[6] |
M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 168. doi: 10.1007/s12613-020-2072-6
|
[7] |
M.S. Prasad, M. Ashfaq, N.K. Babu, A. Sreekanth, K. Sivaprasad, and V. Muthupandi, Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 566. doi: 10.1007/s12613-017-1438-x
|
[8] |
M. Ahangari, M.H. Johar, and M. Saremi, Hydroxyapatite-carboxymethyl cellulose-graphene composite coating development on AZ31 magnesium alloy: Corrosion behavior and mechanical properties, Ceram. Int., 47(2021), No. 3, p. 3529. doi: 10.1016/j.ceramint.2020.09.197
|
[9] |
Y.L. Wang, Y.H. Zhu, C. Li, et al., Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg–Li alloy, Appl. Surf. Sci., 369(2016), p. 384. doi: 10.1016/j.apsusc.2016.02.102
|
[10] |
M. Tencer, Electrical conductivity of chromate conversion coating on electrodeposited zinc, Appl. Surf. Sci., 252(2006), No. 23, p. 8229. doi: 10.1016/j.apsusc.2005.10.039
|
[11] |
M. Glor, Electrostatic ignition hazards in the process industry, J. Electrost., 63(2005), No. 6-10, p. 447. doi: 10.1016/j.elstat.2005.03.001
|
[12] |
W.J. Cheong, B.L. Luan, and D.W. Shoesmith, Protective coating on Mg AZ91D alloy – The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni–P deposit, Corros. Sci., 49(2007), No. 4, p. 1777. doi: 10.1016/j.corsci.2006.08.025
|
[13] |
Z.M. Liu and W. Gao, Electroless nickel plating on AZ91 Mg alloy substrate, Surf. Coat. Technol., 200(2006), No. 16-17, p. 5087. doi: 10.1016/j.surfcoat.2005.05.023
|
[14] |
G.S. Wu, X.Q. Zeng, and G.Y. Yuan, Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy, Mater. Lett., 62(2008), No. 28, p. 4325. doi: 10.1016/j.matlet.2008.07.014
|
[15] |
X.H. Guo, K.Q. Du, Q.Z. Guo, Y. Wang, and F.H. Wang, Experimental study of corrosion protection of a three-layer film on AZ31B Mg alloy, Corros. Sci., 65(2012), p. 367. doi: 10.1016/j.corsci.2012.08.055
|
[16] |
S.Y. Jian, Y.R. Chu, and C.S. Lin, Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance, Corros. Sci., 93(2015), p. 301. doi: 10.1016/j.corsci.2015.01.040
|
[17] |
G.Q. Duan, L.X. Yang, S.J. Liao, et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197. doi: 10.1016/j.corsci.2018.02.051
|
[18] |
W. Zhu, W.F. Li, S.L. Mu, N.Q. Fu, and Z.M. Liao, Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties, Appl. Surf. Sci., 405(2017), p. 157. doi: 10.1016/j.apsusc.2017.02.046
|
[19] |
W. Zai, Y.C. Su, H.C. Man, J.S. Lian, and G.Y. Li, Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy, Appl. Surf. Sci., 492(2019), p. 314. doi: 10.1016/j.apsusc.2019.05.309
|
[20] |
S.M. Hung, H. Lin, H.W. Chen, S.Y. Chen, and C.S. Lin, Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg–Li alloy, J. Mater. Res. Technol., 11(2021), p. 1953. doi: 10.1016/j.jmrt.2021.02.050
|
[21] |
A. Fattah-alhosseini and M.S. Joni, Investigation of the passive behaviour of AZ31B alloy in alkaline solutions, J. Magnes. Alloys, 2(2014), No. 2, p. 175. doi: 10.1016/j.jma.2014.05.007
|
[22] |
D.F. Zhang, Z.B. Qi, B.B. Wei, Z.T. Wu, and Z.C. Wang, Anticorrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering, Surf. Coat. Technol., 309(2017), p. 12. doi: 10.1016/j.surfcoat.2016.11.042
|
[23] |
C.Y. Li, X.L. Fan, L.Y. Cui, and R.C. Zeng, Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31, Corros. Sci., 168(2020), art. No. 108570. doi: 10.1016/j.corsci.2020.108570
|
[24] |
S.L. Mu, J. Du, H. Jiang, and W.F. Li, Composition analysis and corrosion performance of a Mo–Ce conversion coating on AZ91 magnesium alloy, Surf. Coat. Technol., 254(2014), p. 364. doi: 10.1016/j.surfcoat.2014.06.044
|
[25] |
S.Y. Jian, Y.C. Tzeng, M.D. Ger, et al., The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium, Mater. Des., 192(2020), art. No. 108707. doi: 10.1016/j.matdes.2020.108707
|
[26] |
L. Kogut and K. Komvopoulos, Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film, J. Appl. Phys., 95(2004), No. 2, p. 576. doi: 10.1063/1.1629392
|
[27] |
F. Ureña-Begara, A. Crunteanu, and J.P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature, Appl. Surf. Sci., 403(2017), p. 717. doi: 10.1016/j.apsusc.2017.01.160
|
[28] |
G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R. de Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron Spectrosc. Relat. Phenom., 135(2004), No. 2-3, p. 167. doi: 10.1016/j.elspec.2004.03.004
|
[29] |
Y.H. Zhou and J. Zhou, Ti/CeOx(111) interfaces studied by XPS and STM, Surf. Sci., 606(2012), No. 7-8, p. 749. doi: 10.1016/j.susc.2012.01.003
|
[30] |
J.J. Guo, X.F. Liu, K.Q. Du, et al., An anti-stripping and self-healing micro-arc oxidation/acrylamide gel composite coating on magnesium alloy AZ31, Mater. Lett., 260(2020), art. No. 126912. doi: 10.1016/j.matlet.2019.126912
|
[31] |
H. Ardelean, I. Frateur, and P. Marcus, Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings, Corros. Sci., 50(2008), No. 7, p. 1907. doi: 10.1016/j.corsci.2008.03.015
|
[32] |
F.Y. Gao, X.L. Tang, H.H. Yi, et al., Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx–CeO2 catalysts for SCR of NOx with NH3 at low temperature, Chem. Eng. J., 317(2017), p. 20. doi: 10.1016/j.cej.2017.02.042
|
[33] |
C. Ubeda, G. Garces, P. Adeva, I. Llorente, G.S. Frankel, and S. Fajardo, The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys, Corros. Sci., 165(2020), art. No. 108384. doi: 10.1016/j.corsci.2019.108384
|
[34] |
P.S. Correa, C.F. Malfatti, and D.S. Azambuja, Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions, Prog. Org. Coat., 72(2011), No. 4, p. 739. doi: 10.1016/j.porgcoat.2011.08.005
|
[35] |
Y.X. Liu, Z. Liu, A.Y. Xu, and X.T. Liu, Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization, J. Magnes. Alloys, 10(2022), No. 5, p. 1368. doi: 10.1016/j.jma.2020.12.005
|
[36] |
A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM), Corros. Sci., 53(2011), No. 10, p. 3186. doi: 10.1016/j.corsci.2011.05.063
|
[37] |
M.C.L. de Oliveira, V.S.M. Pereira, O.V. Correa, N.B. de Lima, and R.A. Antunes, Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment, Corros. Sci., 69(2013), p. 311. doi: 10.1016/j.corsci.2012.12.015
|
[38] |
V. Ezhilselvi, J. Nithin, J.N. Balaraju, and S. Subramanian, The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy, Surf. Coat. Technol., 288(2016), p. 221. doi: 10.1016/j.surfcoat.2016.01.040
|
[39] |
S. Roshan and A.A. Sarabi, Improved performance of Ti-based conversion coating in the presence of Ce/Co ions: Surface characterization, electrochemical and adhesion study, Surf. Coat. Technol., 410(2021), art. No. 126931. doi: 10.1016/j.surfcoat.2021.126931
|
[40] |
J.M. Sánchez-Amaya, G. Blanco, F.J. Garcia-Garcia, M. Bethencourt, and F.J. Botana, XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation, Surf. Coat. Technol., 213(2012), p. 105. doi: 10.1016/j.surfcoat.2012.10.027
|
[41] |
X.W. Yu, C.N. Cao, Z.M. Yao, D.R. Zhou, and Z.D. Yin, Study of double layer rare earth metal conversion coating on aluminum alloy LY12, Corros. Sci., 43(2001), No. 7, p. 1283. doi: 10.1016/S0010-938X(00)00141-4
|
[42] |
T. Fiedler, N. White, M. Dahari, and K. Hooman, On the electrical and thermal contact resistance of metal foam, Int. J. Heat Mass Transfer, 72(2014), p. 565.
|
[43] |
W.E. Wilson, S.V. Angadi, and R.L. Jackson, Surface separation and contact resistance considering sinusoidal elastic-plastic multi-scale rough surface contact, Wear, 268(2010), No. 1-2, p. 190. doi: 10.1016/j.wear.2009.07.012
|
[44] |
D.K. Qiu, L.F. Peng, P.Y. Yi, and X.M. Lai, A micro contact model for electrical contact resistance prediction between roughness surface and carbon fiber paper, Int. J. Mech. Sci., 124-125(2017), p. 37. doi: 10.1016/j.ijmecsci.2017.02.026
|
[45] |
S. Shenogin, L. Ferguson, and A.K. Roy, The effect of contact resistance on electrical conductivity in filled elastomer materials, Polymer, 198(2020), art. No. 122502. doi: 10.1016/j.polymer.2020.122502
|
[46] |
R.J. Barczynski and L. Murawski, Mixed electronic-ionic conductivity in transition metal oxide glasses containing alkaline ions, J. Non Cryst. Solids, 307-310(2002), p. 1055. doi: 10.1016/S0022-3093(02)01572-7
|
[47] |
S. Dahiya, R. Punia, A. Singh, A.S. Maan, and S. Murugavel, DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system, J. Am. Ceram. Soc., 98(2015), No. 9, p. 2776. doi: 10.1111/jace.13661
|
[48] |
I.C. Vinke, J. Diepgrond, B.A. Boukamp, K.J. de Vries, and A.J. Burggraaf, Bulk and electrochemical properties of BiVO4, Solid State Ionics, 57(1992), No. 1-2, p. 83. doi: 10.1016/0167-2738(92)90067-Y
|
[49] |
L. Adijanto, V.B. Padmanabhan, R. Küngas, R.J. Gorte, and J.M. Vohs, Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes, J. Mater. Chem., 22(2012), No. 22, art. No. 11396. doi: 10.1039/c2jm31774e
|
[50] |
M. Liu, Z.L. Lv, Y. Cheng, G.F. Ji, and M. Gong, Structural, elastic and electronic properties of CeVO4 via first-principles calculations, Comput. Mater. Sci., 79(2013), p. 811. doi: 10.1016/j.commatsci.2013.07.024
|
[51] |
E. Mansour, K. El-Egili, and G. El-Damrawi, Mechanism of hopping conduction in new CeO2–B2O3 semiconducting glasses, Physica B, 389(2007), No. 2, p. 355. doi: 10.1016/j.physb.2006.07.017
|
[52] |
R. El-Mallawany, A.H. El-Sayed, and M.M.H.A. El-Gawad, ESR and electrical conductivity studies of (TeO2)0.95(CeO2)0.05 semiconducting glasses, Mater. Chem. Phys., 41(1995), No. 2, p. 87. doi: 10.1016/0254-0584(95)01517-5
|