Zhangzhi Shi, Changheng Li, Meng Li, Xiangmin Li,  and Luning Wang, Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 796-806. https://doi.org/10.1007/s12613-022-2468-6
Cite this article as:
Zhangzhi Shi, Changheng Li, Meng Li, Xiangmin Li,  and Luning Wang, Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 796-806. https://doi.org/10.1007/s12613-022-2468-6
Research Article

Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity

+ Author Affiliations
  • Corresponding authors:

    Zhangzhi Shi    E-mail: ryansterne@163.com

    Luning Wang    E-mail: luning.wang@ustb.edu.cn

  • Received: 1 February 2022Revised: 8 March 2022Accepted: 8 March 2022Available online: 10 March 2022
  • Many non-toxic alloying elements, such as Fe, Ca, and Sr, have negligible solid solubilities in Zn matrix, leading to formation of coarse second phase particles. They exhibit low strengthening effects but highly detrimental to ductility. So refining second phase is a common pursuit for Zn alloys. The present paper takes Zn–0.3Fe alloy suffered from coarse FeZn13 second phase particles as a touchstone to testify microstructure refining effect through solidification with an accelerated speed and multi-pass rolling. FeZn13 particles are refined from 24 to 2 μm, and Zn grains are refined to 5 μm. As a result, the strengthening effect of Fe is enhanced significantly, with yield strength and the ultimate tensile strength of the alloy increased from 132 to 218 MPa and from 159 to 264 MPa, respectively. Furthermore, corrosion non-uniformity and penetration are much alleviated. These results show that microstructure refinement, especially on coarse intermetallic second phases, has a great potential to improve mechanical and degradation properties of biodegradable Zn alloys.
  • loading
  • [1]
    R. Solmaz and B.D. Karahan, Characterization and corrosion studies of ternary Zn–Ni–Sn alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 74. doi: 10.1007/s12613-019-1888-4
    [2]
    Nikhil, G. Ji, and R. Prakash, Hydrothermal synthesis of Zn–Mg-based layered double hydroxide coatings for the corrosion protection of copper in chloride and hydroxide media, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1991. doi: 10.1007/s12613-020-2122-0
    [3]
    B. Abedini, N.P. Ahmadi, S. Yazdani, and L. Magagnin, Structure and corrosion behavior of Zn–Ni–Mn/Zn–Ni layered alloy coatings electrodeposited under various potential regimes, Surf. Coat. Technol., 372(2019), p. 260. doi: 10.1016/j.surfcoat.2019.05.051
    [4]
    H.T. Yang, X.H. Qu, M.Q. Wang, H.W. Cheng, B. Jia, J.F. Nie, K.R. Dai, and Y.F. Zheng, Zn–0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites, Chem. Eng. J., 417(2021), art. No. 129317. doi: 10.1016/j.cej.2021.129317
    [5]
    B. Jia, H.T. Yang, Y. Han, Z.C. Zhang, X.H. Qu, Y.F. Zhuang, Q. Wu, Y.F. Zheng, and K.R. Dai, In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications, Acta Biomater., 108(2020), p. 358. doi: 10.1016/j.actbio.2020.03.009
    [6]
    H. Guo, J.L. Hu, Z.Q. Shen, D.X. Du, Y.F. Zheng, and J.R. Peng, In vitro and in vivo studies of biodegradable Zn–Li–Mn alloy staples designed for gastrointestinal anastomosis, Acta Biomater., 121(2021), p. 713. doi: 10.1016/j.actbio.2020.12.017
    [7]
    B. Jia, H.T. Yang, Z.C. Zhang, X.H. Qu, X.F. Jia, Q. Wu, Y. Han, Y.F. Zheng, and K.R. Dai, Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies, Bioact. Mater., 6(2021), No. 6, p. 1588. doi: 10.1016/j.bioactmat.2020.11.007
    [8]
    J. Sun, X. Zhang, Z.Z. Shi, X.X. Gao, H.Y. Li, F.Y. Zhao, J.Q. Wang, and L.N. Wang, Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation, Acta Biomater., 119(2021), p. 485. doi: 10.1016/j.actbio.2020.10.032
    [9]
    C. Xiao, X.Y. Shi, W.T. Yu, X.W. Wei, L.L. Cheng, X. Qiu, B.R. Li, D.C. Fan, J.L. Li, X.Z. Zhang, and D.W. Zhao, In vivo biocompatibility evaluation of Zn–0.05Mg–(0, 0.5, 1wt%)Ag implants in New Zealand rabbits, Mater. Sci. Eng. C, 119(2021), art. No. 111435. doi: 10.1016/j.msec.2020.111435
    [10]
    Z.Z. Shi, X.X. Gao, H.T. Chen, X.F. Liu, A. Li, H.J. Zhang, and L.N. Wang, Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn–Fe alloy through second phase refinement, Mater. Sci. Eng. C, 116(2020), art. No. 111197. doi: 10.1016/j.msec.2020.111197
    [11]
    W.T. Zhang, P. Li, G. Shen, X.S. Mo, C. Zhou, D. Alexander, F. Rupp, J. Geis-Gerstorfer, H.J. Zhang, and G.J. Wan, Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application, Bioact. Mater., 6(2021), No. 4, p. 975. doi: 10.1016/j.bioactmat.2020.09.019
    [12]
    Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin, and L.N. Wang, Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties, Bioact. Mater., 5(2020), No. 2, p. 210. doi: 10.1016/j.bioactmat.2020.02.010
    [13]
    Z.Z. Shi, Z.L. Li, W.S. Bai, A. Tuoliken, J. Yu, and X.F. Liu, (Fe, Mn)Zn13 phase and its core–shell structure in novel biodegradable Zn–Mn–Fe alloys, Mater. Des., 162(2019), p. 235. doi: 10.1016/j.matdes.2018.11.057
    [14]
    A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion, The suitability of Zn–1.3%Fe alloy as a biodegradable implant material, Metals, 8(2018), No. 3, art. No. 153. doi: 10.3390/met8030153
    [15]
    H.T. Yang, B. Jia, Z.C. Zhang, X.H. Qu, G.N. Li, W.J. Lin, D.H. Zhu, K.R. Dai, and Y.F. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), art. No. 401. doi: 10.1038/s41467-019-14153-7
    [16]
    R. Yue, H. Huang, G.Z. Ke, H. Zhang, J. Pei, G.H. Xue, and G.Y. Yuan, Microstructure, mechanical properties and in vitro degradation behavior of novel Zn–Cu–Fe alloys, Mater. Charact., 134(2017), p. 114. doi: 10.1016/j.matchar.2017.10.015
    [17]
    Z.Z. Shi, W.S. Bai, X.F. Liu, H.J. Zhang, Y.X. Yin, and L.N. Wang, Significant refinement of coarse (Fe, Mn)Zn13 phase in biodegradable Zn–1Mn–0.1Fe alloy with minor addition of rare earth elements, Mater. Charact., 158(2019), art. No. 109993. doi: 10.1016/j.matchar.2019.109993
    [18]
    P.S. Lyu, W.L. Wang, and H.H. Zhang, Mold simulator study on the initial solidification of molten steel near the corner of continuous casting mold, Metall. Mater. Trans. B, 48(2017), No. 1, p. 247. doi: 10.1007/s11663-016-0853-0
    [19]
    Z.Z. Shi, J. Yu, X.F. Liu, and L.N. Wang, Fabrication and characterization of novel biodegradable Zn–Mn–Cu alloys, J. Mater. Sci. Technol., 34(2018), No. 6, p. 1008. doi: 10.1016/j.jmst.2017.11.026
    [20]
    Z.Z. Shi, H.Y. Li, J.Y. Xu, X.X. Gao, and X.F. Liu, Microstructure evolution of a high-strength low-alloy Zn–Mn–Ca alloy through casting, hot extrusion and warm caliber rolling, Mater. Sci. Eng. A, 771(2020), art. No. 138626. doi: 10.1016/j.msea.2019.138626
    [21]
    H.T. Chen, Z.Z. Shi, and X.F. Liu, Microstructure and mechanical properties of extruded and caliber rolled biodegradable Zn–0.8Mn–0.4Ag alloy with high ductility, Mater. Sci. Eng. A, 770(2020), art. No. 138543. doi: 10.1016/j.msea.2019.138543
    [22]
    Z.Z. Shi, J. Yu, and X.F. Liu, Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature, Mater. Des., 144(2018), p. 343. doi: 10.1016/j.matdes.2018.02.049
    [23]
    A. Gangan, M. ElSabbagh, M.A. Bedair, H.M. Ahmed, M. El-Sabbah, S.M. El-Bahy, and A. Fahmy, Influence of pH values on the electrochemical performance of low carbon steel coated by plasma thin SiOxCy films, Arabian J. Chem., 14(2021), No. 10, art. No. 103391. doi: 10.1016/j.arabjc.2021.103391
    [24]
    Z.Z. Shi, J. Yu, X.F. Liu, H.J. Zhang, D.W. Zhang, Y.X. Yin, and L.N. Wang, Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn–0.8Mn alloy, Mater. Sci. Eng. C, 99(2019), p. 969. doi: 10.1016/j.msec.2019.02.044
    [25]
    Z.Z. Shi, X.X. Gao, and X.F. Liu, FeZn13 intermetallic compound in biodegradable Zn–Fe alloy: Twinning and its shape effect, Mater. Charact., 164(2020), art. No. 110352. doi: 10.1016/j.matchar.2020.110352
    [26]
    S.Y. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn–Mg alloys, Bioact. Mater., 4(2019), p. 8. doi: 10.1016/j.bioactmat.2018.11.001
    [27]
    E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani, Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater., 60(2016), p. 581. doi: 10.1016/j.jmbbm.2016.03.018
    [28]
    L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li, and G.W. Qin, Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys, Acta Metall. Sin., 30(2017), No. 10, p. 931. doi: 10.1007/s40195-017-0585-4
    [29]
    H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, and L. Qin, Development of biodegradable Zn–1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci. Rep., 5(2015), art. No. 10719. doi: 10.1038/srep10719
    [30]
    I. Pospíšilová, V. Soukupová, and D. Vojtěch, Influence of calcium on the structure and mechanical properties of biodegradable zinc alloys, Mater. Sci. Forum, 891(2017), p. 400. doi: 10.4028/www.scientific.net/MSF.891.400
    [31]
    Z.B. Tang, J.L. Niu, H. Huang, H. Zhang, J. Pei, J.M. Ou, and G.Y. Yuan, Potential biodegradable Zn–Cu binary alloys developed for cardiovascular implant applications, J. Mech. Behav. Biomed. Mater., 72(2017), p. 182. doi: 10.1016/j.jmbbm.2017.05.013
    [32]
    P. Li, W.T. Zhang, J.T. Dai, A.B. Xepapadeas, E. Schweizer, D. Alexander, L. Scheideler, C. Zhou, H.J. Zhang, G.J. Wan, and J. Geis-Gerstorfer, Investigation of zinc–copper alloys as potential materials for craniomaxillofacial osteosynthesis implants, Mater. Sci. Eng. C, 103(2019), art. No. 109826. doi: 10.1016/j.msec.2019.109826
    [33]
    S.N. Sun, Y.P. Ren, L.Q. Wang, B. Yang, H.X. Li, and G.W. Qin, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys, Mater. Sci. Eng. A, 701(2017), p. 129. doi: 10.1016/j.msea.2017.06.037
    [34]
    M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani, Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications, Mater. Sci. Eng. C, 77(2017), p. 1170. doi: 10.1016/j.msec.2017.04.023
    [35]
    P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, and J.W. Drelich, Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt% Al) through mechanical and in vivo testing for stent applications, J. Biomed. Mater. Res. Part B, 106(2018), No. 1, p. 245. doi: 10.1002/jbm.b.33850
    [36]
    S. Zhao, C.T. McNamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, and J.W. Drelich, Structural characteristics and in vitro biodegradation of a novel Zn–Li alloy prepared by induction melting and hot rolling, Metall. Mater. Trans. A, 48(2017), No. 3, p. 1204. doi: 10.1007/s11661-016-3901-0
    [37]
    S.M. Zhu, C.C. Wu, G.N. Li, Y.F. Zheng, and J.F. Nie, Microstructure, mechanical properties and creep behaviour of extruded Zn–xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications, Mater. Sci. Eng. A, 777(2020), art. No. 139082. doi: 10.1016/j.msea.2020.139082
    [38]
    Z.Y. Yin, Microstructural Evolution and Mechanical Properties of ZnTi Alloys for Biodegradable Stent Applications [Dissertation], Michigan Technological University, Houghton, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(10090) PDF Downloads(95) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return