Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang, and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1061-1072. https://doi.org/10.1007/s12613-022-2469-5
Cite this article as:
Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang, and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1061-1072. https://doi.org/10.1007/s12613-022-2469-5
Research Article

MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors

+ Author Affiliations
  • Corresponding author:

    Jianling Li    E-mail: lijianling@ustb.edu.cn

  • Received: 24 January 2022Revised: 2 March 2022Accepted: 9 March 2022Available online: 10 March 2022
  • Two-dimensional Ti3C2Tx exhibits outstanding rate property and cycle performance in lithium-ion capacitors (LICs) due to its unique layered structure, excellent electronic conductivity, and high specific surface area. However, like graphene, Ti3C2Tx restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces, leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material. Here, a transition metal selenide MoSe2 with a special three-stacked atomic layered structure, derived from metal–organic framework (MOF), is introduced into the Ti3C2Tx structure through a solvothermal method. The synergic effects of rapid Li+ diffusion and pillaring effect from the MoSe2 and excellent conductivity from the Ti3C2Tx sheets endow the material with excellent electrochemical reaction kinetics and capacity. The composite Ti3C2Tx@MoSe2 material exhibits a high capacity over 300 mAh·g−1 at 150 mA·g−1 and excellent rate property with a specific capacity of 150 mAh·g−1 at 1500 mA·g−1. Additionally, the material shows a superior capacitive contribution of 86.0% at 2.0 mV·s−1 due to the fast electrochemical reactions. A Ti3C2Tx@MoSe2//AC LIC device is also fabricated and exhibits stable cycle performance.
  • loading
  • Supplementary Information10.1007s12613-022-2469-5.docx
  • [1]
    Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
    [2]
    L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
    [3]
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23(2011), No. 37, p. 4248. doi: 10.1002/adma.201102306
    [4]
    M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater., 26(2014), No. 7, p. 992. doi: 10.1002/adma.201304138
    [5]
    C.E. Shuck and Y. Gogotsi, Taking MXenes from the lab to commercial products, Chem. Eng. J., 401(2020), art. No. 125786. doi: 10.1016/j.cej.2020.125786
    [6]
    M.R. Lukatskaya, S. Kota, Z.F. Lin, M.Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.L. Taberna, M.W. Barsoum, P. Simon, and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2(2017), art. No. 17105. doi: 10.1038/nenergy.2017.105
    [7]
    Y.P. Tian, C.H. Yang, W.X. Que, X.B. Liu, X.T. Yin, and L.B. Kong, Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor, J. Power Sources, 359(2017), p. 332. doi: 10.1016/j.jpowsour.2017.05.081
    [8]
    L. Li, N. Zhang, M.Y. Zhang, L.L. Wu, X.T. Zhang, and Z.G. Zhang, Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7442. doi: 10.1021/acssuschemeng.8b00047
    [9]
    A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J.W. Li, B.W. Byles, B. Blake, K.L. Van Aken, S. Kota, E. Pomerantseva, J.W. Lee, Y. Chen, and Y. Gogotsi, Lithium-ion capacitors with 2D Nb2CTx (MXene)—Carbon nanotube electrodes, J. Power Sources, 326(2016), p. 686. doi: 10.1016/j.jpowsour.2016.03.066
    [10]
    M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, and Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene), Adv. Mater., 28(2016), No. 7, p. 1517. doi: 10.1002/adma.201504705
    [11]
    J.J. Shi, Y.X. Hou, Z.Y. Liu, Y.F. Zheng, L. Wen, J. Su, L.Y. Li, N.S. Liu, Z. Zhang, and Y.H. Gao, The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651. doi: 10.1016/j.nanoen.2021.106651
    [12]
    Z.Y. Li, G.R. Chen, J. Deng, D. Li, T.T. Yan, Z.X. An, L.Y. Shi, and D.S. Zhang, Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors, ACS Sustainable Chem. Eng., 7(2019), No. 18, p. 15394. doi: 10.1021/acssuschemeng.9b02849
    [13]
    Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632. doi: 10.1002/smll.201803632
    [14]
    Y.M. Wang, X. Wang, X.L. Li, R. Liu, Y. Bai, H.H. Xiao, Y. Liu, and G.H. Yuan, Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices, Nano-Micro Lett., 12(2020), No. 1, art. No. 115. doi: 10.1007/s40820-020-00450-0
    [15]
    Q. Zhao, Q.Z. Zhu, J.W. Miao, P. Zhang, P.B. Wan, L.Z. He, and B. Xu, Flexible 3D porous MXene foam for high-performance lithium-ion batteries, Small, 15(2019), No. 51, p. e1904293. doi: 10.1002/smll.201904293
    [16]
    M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
    [17]
    X. Yang, Y.W. Yao, Q. Wang, K. Zhu, K. Ye, G.L. Wang, D.X. Cao, and J. Yan, 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life, Adv. Funct. Mater., 32(2022), No. 10, art. No. 2109479. doi: 10.1002/adfm.202109479
    [18]
    Z.L. Wang, J.R. Bai, H.Y. Xu, G. Chen, S.F. Kang, and X. Li, Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage, J. Colloid Interface Sci., 577(2020), p. 329. doi: 10.1016/j.jcis.2020.05.035
    [19]
    Y. Xia, L.F. Que, F.D. Yu, L. Deng, C. Liu, X.L. Sui, L. Zhao, and Z.B. Wang, Boosting ion/e transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors, Chem. Eng. J., 404(2021), art. No. 127116. doi: 10.1016/j.cej.2020.127116
    [20]
    M.J. Shi, P. Xiao, J.W. Lang, C. Yan, and X.B. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid, Adv. Sci., 7(2020), No. 2, art. No. 1901975. doi: 10.1002/advs.201901975
    [21]
    J.M. Luo, J.H. Zheng, J.W. Nai, C.B. Jin, H.D. Yuan, O.W. Sheng, Y.J. Liu, R.Y. Fang, W.K. Zhang, H. Huang, Y.P. Gan, Y. Xia, C. Liang, J. Zhang, W.Y. Li, and X.Y. Tao, Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1808107. doi: 10.1002/adfm.201808107
    [22]
    J.M. Luo, W.K. Zhang, H.D. Yuan, C.B. Jin, L.Y. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y.P. Gan, and X.Y. Tao, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors, ACS Nano, 11(2017), No. 3, p. 2459. doi: 10.1021/acsnano.6b07668
    [23]
    O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716. doi: 10.1038/ncomms2664
    [24]
    E.Z. Xu, P.C. Li, J.J. Quan, H.W. Zhu, L. Wang, Y.J. Chang, Z.J. Sun, L. Chen, D.B. Yu, and Y. Jiang, Dimensional gradient structure of CoSe2@CNTs–MXene anode assisted by ether for high-capacity, stable sodium storage, Nano-Micro Lett., 13(2021), No. 1, art. No. 40. doi: 10.1007/s40820-020-00562-7
    [25]
    H.X. Chao, H.Q. Qin, M.D. Zhang, Y.C. Huang, L.F. Cao, H.L. Guo, K. Wang, X.L. Teng, J.K. Cheng, Y.K. Lu, H. Hu, and M.B. Wu, Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets, Adv. Funct. Mater., 31(2021), No. 16, art. No. 2007636. doi: 10.1002/adfm.202007636
    [26]
    B. Cao, H. Liu, X. Zhang, P. Zhang, Q.Z. Zhu, H.L. Du, L.L. Wang, R.P. Zhang, and B. Xu, MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 202. doi: 10.1007/s40820-021-00728-x
    [27]
    H. Wang, X.Y. Wang, L. Wang, J. Wang, D.L. Jiang, G.P. Li, Y. Zhang, H.H. Zhong, and Y. Jiang, Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery, J. Phys. Chem. C, 119(2015), No. 19, p. 10197. doi: 10.1021/acs.jpcc.5b00353
    [28]
    J. Morales, J. Santos, and J.L. Tirado, Electrochemical studies of lithium and sodium intercalation in MoSe2, Solid State Ionics, 83(1996), No. 1-2, p. 57. doi: 10.1016/0167-2738(95)00234-0
    [29]
    Z.G. Zou, Q. Wang, J. Yan, K. Zhu, K. Ye, G.L. Wang, and D.X. Cao, Versatile interfacial self-assembly of Ti3C2Tx MXene based composites with enhanced kinetics for superior lithium and sodium storage, ACS Nano, 15(2021), No. 7, p. 12140. doi: 10.1021/acsnano.1c03516
    [30]
    Z.X. Wang, Z. Xu, H.C. Huang, X. Chu, Y.T. Xie, D. Xiong, C. Yan, H.B. Zhao, H.T. Zhang, and W.Q. Yang, Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors, ACS Nano, 14(2020), No. 4, p. 4916. doi: 10.1021/acsnano.0c01056
    [31]
    Y.J. Gong, S.B. Yang, L. Zhan, L.L. Ma, R. Vajtai, and P.M. Ajayan, A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage, Adv. Funct. Mater., 24(2014), No. 1, p. 125. doi: 10.1002/adfm.201300844
    [32]
    F. Sagane, T. Abe, and Z. Ogumi, Li+-ion transfer through the interface between Li+-ion conductive ceramic electrolyte and Li+-ion-concentrated propylene carbonate solution, J. Phys. Chem. C, 113(2009), No. 46, p. 20135. doi: 10.1021/jp908623c
    [33]
    Z. Wang, T. Chen, W.X. Chen, K. Chang, L. Ma, G.C. Huang, D.Y. Chen, and J.Y. Lee, CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 6, p. 2202. doi: 10.1039/C2TA00598K
    [34]
    Y. Liu, M.Q. Zhu, and D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. A, 3(2015), No. 22, p. 11857. doi: 10.1039/C5TA02100F
    [35]
    V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597. doi: 10.1039/c3ee44164d
    [36]
    H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, and S. E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films, J. Phys. Chem. B, 101(1997), No. 39, p. 7717. doi: 10.1021/jp970490q
    [37]
    J. Wang, J. Polleux, J. Lim, and B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 111(2007), No. 40, p. 14925. doi: 10.1021/jp074464w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(1562) PDF Downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return