Cite this article as: |
Xin Lu, Weijian Tian, Hui Li, Xinjian Li, Kui Quan, and Hao Bai, Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 388-400. https://doi.org/10.1007/s12613-022-2475-7 |
Xin Lu E-mail: xin.lu.a5@tohoku.ac.jp
Hao Bai E-mail: baihao@metall.ustb.edu.cn
[1] |
H. Wang, X. Lu, Y. Deng, et al., China’s CO2 peak before 2030 implied from characteristics and growth of cities, Nat. Sustainability, 2(2019), No. 8, p. 748. doi: 10.1038/s41893-019-0339-6
|
[2] |
Z. Liu, D.B. Guan, S. Moore, H. Lee, J. Su, and Q. Zhang, Climate policy: Steps to China’s carbon peak, Nature, 522(2015), No. 7556, p. 279. doi: 10.1038/522279a
|
[3] |
D.B. Guan, Y.L. Shan, Z. Liu, and K.B. He, Performance assessment and outlook of China’s emission-trading scheme, Engineering, 2(2016), No. 4, p. 398. doi: 10.1016/J.ENG.2016.04.016
|
[4] |
K. Daehn, R. Basuhi, J. Gregory, M. Berlinger, V. Somjit, and E.A. Olivetti, Innovations to decarbonize materials industries, Nat. Rev. Mater., 7(2022), No. 4, p. 275. doi: 10.1038/s41578-021-00376-y
|
[5] |
D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64. doi: 10.1038/s41586-019-1702-5
|
[6] |
World Steel Association, Steel Statistical Yearbook 2021, Brussels, Belgium, 2021 [February 2, 2022]. http://www.worldsteel.org
|
[7] |
Z.C. Guo and Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, Energy, 35(2010), No. 11, p. 4356. doi: 10.1016/j.energy.2009.04.008
|
[8] |
W.Q. Wu, Y.J. Li, T.Y. Zhu, and W.J. Cao, CO2 emission in iron and steel making industry and its reduction prospect, Chin. J. Process Eng., 13(2013), p. 175.
|
[9] |
J.C. Brunke and M. Blesl, A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry, Energy Policy, 67(2014), p. 431. doi: 10.1016/j.enpol.2013.12.024
|
[10] |
N. Karali, T.F. Xu, and J. Sathaye, Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector, Appl. Energy, 120(2014), p. 133. doi: 10.1016/j.apenergy.2014.01.055
|
[11] |
L. Price, J. Sinton, E. Worrell, D. Phylipsen, H. Xiulian, and L. Ji, Energy use and carbon dioxide emissions from steel production in China, Energy, 27(2002), No. 5, p. 429. doi: 10.1016/S0360-5442(01)00095-0
|
[12] |
S. Siitonen, M. Tuomaala, and P. Ahtila, Variables affecting energy efficiency and CO2 emissions in the steel industry, Energy Policy, 38(2010), No. 5, p. 2477. doi: 10.1016/j.enpol.2009.12.042
|
[13] |
K. Tanaka, A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry, Energy Policy, 51(2012), p. 578. doi: 10.1016/j.enpol.2012.08.075
|
[14] |
X.L. Wang and B.Q. Lin, How to reduce CO2 emissions in China’s iron and steel industry, Renewable Sustainable Energy Rev., 57(2016), p. 1496. doi: 10.1016/j.rser.2015.12.131
|
[15] |
X.C. Zhao, H. Bai, X. Lu, Q. Shi, and J.H. Han, A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process, Appl. Energy, 148(2015), p. 142. doi: 10.1016/j.apenergy.2015.03.046
|
[16] |
X.C. Zhao, H. Bai, Q. Shi, X. Lu, and Z.H. Zhang, Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing, Appl. Energy, 195(2017), p. 100. doi: 10.1016/j.apenergy.2017.03.037
|
[17] |
H.M. Na, J.C. Sun, Z.Y. Qiu, et al., A novel evaluation method for energy efficiency of process industry—A case study of typical iron and steel manufacturing process, Energy, 233(2021), art. No. 121081. doi: 10.1016/j.energy.2021.121081
|
[18] |
W.Q. Long, S.S. Wang, C.Y. Lu, et al., Quantitative assessment of energy conservation potential and environmental benefits of an iron and steel plant in China, J. Cleaner Prod., 273(2020), art. No. 123163. doi: 10.1016/j.jclepro.2020.123163
|
[19] |
J.L. Suer, M. Traverso, and F. Ahrenhold, Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067, J. Cleaner Prod., 318(2021), art. No. 128588. doi: 10.1016/j.jclepro.2021.128588
|
[20] |
K.H. Ma, J.Y. Deng, G. Wang, Q. Zhou, and J. Xu, Utilization and impacts of hydrogen in the ironmaking processes: A review from lab-scale basics to industrial practices, Int. J. Hydrogen Energy, 46(2021), No. 52, p. 26646. doi: 10.1016/j.ijhydene.2021.05.095
|
[21] |
J.C. Sun, H.M. Na, T.Y. Yan, et al., A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry, Energy, 235(2021), art. No. 121429. doi: 10.1016/j.energy.2021.121429
|
[22] |
X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the World, J. Cleaner Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
|
[23] |
J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
|
[24] |
M. Fischedick, J. Marzinkowski, P. Winzer, and M. Weigel, Techno-economic evaluation of innovative steel production technologies, J. Cleaner Prod., 84(2014), p. 563. doi: 10.1016/j.jclepro.2014.05.063
|
[25] |
C.Q. Hu, X.W. Han, Z.H. Li, and C.X. Zhang, Comparison of CO2 emission between COREX and blast furnace iron-making system, J. Environ. Sci., 21(2009), p. S116. doi: 10.1016/S1001-0742(09)60052-8
|
[26] |
M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari, A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing, Renewable Sustainable Energy Rev., 50(2015), p. 594. doi: 10.1016/j.rser.2015.05.026
|
[27] |
A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev., 33(2014), p. 645. doi: 10.1016/j.rser.2014.02.031
|
[28] |
R. Zhu, B.C. Han, K. Dong, and G.S. Wei, A review of carbon dioxide disposal technology in the converter steelmaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1421. doi: 10.1007/s12613-020-2065-5
|
[29] |
V. Strezov, A. Evans, and T. Evans, Defining sustainability indicators of iron and steel production, J. Cleaner Prod., 51(2013), p. 66. doi: 10.1016/j.jclepro.2013.01.016
|
[30] |
S.H. Zhang, E. Worrell, W. Crijns-Graus, F. Wagner, and J. Cofala, Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry, Energy, 78(2014), p. 333. doi: 10.1016/j.energy.2014.10.018
|
[31] |
T. Ariyama and M. Sato, Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works, ISIJ Int., 46(2006), No. 12, p. 1736. doi: 10.2355/isijinternational.46.1736
|
[32] |
H. Bai, P. Liu, H.X. Li, L.H. Zhao, and D.Q. Cang, Analysis of carbon emission reduction of China’s integrated steelworks, [in] N.R. Neelameggham, C.K. Belt, M. Jolly, R.G. Reddy, and J.A. Yurko, eds., Energy Technology 2011: Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy and Waste Heat Recovery, John Wiley & Sons, Inc., Hoboken, 2011, p. 253.
|
[33] |
L.M. Germeshuizen and P.W.E. Blom, A techno-economic evaluation of the use of hydrogen in a steel production process, utilizing nuclear process heat, Int. J. Hydrogen Energy, 38(2013), No. 25, p. 10671. doi: 10.1016/j.ijhydene.2013.06.076
|
[34] |
A.R. da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Cleaner Prod., 46(2013), p. 27. doi: 10.1016/j.jclepro.2012.07.045
|
[35] |
M.T. Johansson, Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions, Energy, 57(2013), p. 699. doi: 10.1016/j.energy.2013.06.010
|
[36] |
D.B. Guo, L.D. Zhu, S. Guo, et al., Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer, Fuel Process. Technol., 148(2016), p. 276. doi: 10.1016/j.fuproc.2016.03.009
|
[37] |
H. Helle, M. Helle, H. Saxén, and F. Pettersson, Mathematical optimization of ironmaking with biomass as auxiliary reductant in the blast furnace, ISIJ Int., 49(2009), No. 9, p. 1316. doi: 10.2355/isijinternational.49.1316
|
[38] |
P. Sodsai and P. Rachdawong, The Current situation on CO2 emissions from the steel industry in Thailand and mitigation options, Int. J. Greenhouse Gas Control, 6(2012), p. 48. doi: 10.1016/j.ijggc.2011.11.018
|
[39] |
H. Suopajärvi, E. Pongrácz, and T. Fabritius, Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost, Appl. Energy, 124(2014), p. 82. doi: 10.1016/j.apenergy.2014.03.008
|
[40] |
W.D. Judge, J. Paeng, and G. Azimi, Electrorefining for direct decarburization of molten iron, Nat. Mater., 21(2022), 10, p. 1130. doi: 10.1038/s41563-021-01106-z
|
[41] |
M. Asanuma, T. Ariyama, M. Sato, et al., Development of waste plastics injection process in blast furnace, ISIJ Int., 40(2000), No. 3, p. 244. doi: 10.2355/isijinternational.40.244
|
[42] |
A. Ziębik and W. Stanek, Forecasting of the energy effects of injecting plastic wastes into the blast furnace in comparison with other auxiliary fuels, Energy, 26(2001), No. 12, p. 1159. doi: 10.1016/S0360-5442(01)00077-9
|
[43] |
M. Meng, D.X. Niu, and W. Shang, CO2 emissions and economic development: China’s 12th five-year plan, Energy Policy, 42(2012), p. 468. doi: 10.1016/j.enpol.2011.12.013
|
[44] |
R.G.D. Pinto, A.S. Szklo, and R. Rathmann, CO2 emissions mitigation strategy in the Brazilian iron and steel sector – From structural to intensity effects, Energy Policy, 114(2018), p. 380. doi: 10.1016/j.enpol.2017.11.040
|
[45] |
W.Y. Chen, X. Yin, and D. Ma, A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions, Appl. Energy, 136(2014), p. 1174. doi: 10.1016/j.apenergy.2014.06.002
|
[46] |
A. Hasanbeigi, L. Price, C.X. Zhang, N. Aden, X.P. Li, and F.Q. Shangguan, Comparison of iron and steel production energy use and energy intensity in China and the U.S., J. Cleaner Prod., 65(2014), p. 108. doi: 10.1016/j.jclepro.2013.09.047
|
[47] |
A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, and T.F. Xu, A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry, Energy, 50(2013), p. 315. doi: 10.1016/j.energy.2012.10.062
|
[48] |
Y. Li and L. Zhu, Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector, Appl. Energy, 130(2014), p. 603. doi: 10.1016/j.apenergy.2014.04.014
|
[49] |
E. Worrell, L. Price, and N. Martin, Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector, Energy, 26(2001), No. 5, p. 513. doi: 10.1016/S0360-5442(01)00017-2
|
[50] |
H. Bai, X. Lu, H.X. Li, et al., The relationship between energy consumption and CO2 Emissions in iron and steel making, [in] M.D. Salazar-Villalpando, N.R. Neelameggham, D.P. Guillen, S. Pati, and G.K. Krumdick, eds., Energy Technology 2012: Carbon Dioxide Management and Other Technologies, John Wiley & Sons, Inc., Hoboken, 2012, p. 125.
|
[51] |
X. Lu, H. Bai, L.H. Zhao, X.T. Liu, and D.Q. Cang, Relationship between energy consumption and CO2 emission of iron and steel plant, J. Univ. Sci. Technol. Beijing, 34(2012), p. 1445.
|
[52] |
R.L. Milford, S. Pauliuk, J.M. Allwood, and D.B. Müller, The roles of energy and material efficiency in meeting steel industry CO2 targets, Environ. Sci. Technol., 47(2013), No. 7, p. 3455. doi: 10.1021/es3031424
|
[53] |
B. Yu, X. Li, L. Shi, and Y. Qian, Quantifying CO2 emission reduction from industrial symbiosis in integrated steel Mills in China, J. Cleaner Prod., 103(2015), p. 801. doi: 10.1016/j.jclepro.2014.08.015
|
[54] |
H. Zhang, L. Dong, H.Q. Li, T. Fujita, S. Ohnishi, and Q. Tang, Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis, Energy Policy, 61(2013), p. 1400. doi: 10.1016/j.enpol.2013.05.066
|
[55] |
Y.L. Shan, Z. Liu, and D.B. Guan, CO2 emissions from China’s lime industry, Appl. Energy, 166(2016), p. 245. doi: 10.1016/j.apenergy.2015.04.091
|
[56] |
H. Li, L.F. Guo, Z.Q. Li, W.C. Song, and Y.Q. Li, Research of low-carbon mode and on limestone addition instead of lime in the BOF steelmaking, J. Iron Steel Res. Int., 17(2010), Suppl.2, p. 23.
|
[57] |
A. Ziebik, K. Lampert, and M. Szega, Energy analysis of a blast-furnace system operating with the COREX process and CO2 removal, Energy, 33(2008), No. 2, p. 199. doi: 10.1016/j.energy.2007.09.003
|
[58] |
H. Xu, H. Qian, Y.S. Zhou, and Z.Y. Li, MIDREX shaft technology in COREX–DR combined process at SALDANHA steel, World Iron Steel, 10(2010), No. 2, p. 6.
|
[59] |
X.D. Jin, Choice of non-coking ironmaking process, Iron Steel, 33(1998), No. 4, p. 11.
|
[60] |
Z.H. Kuang, J.J. Lin, and X.Q. Li, Performance of Coal used in COREX Technological Process, Ironmaking, 27(2008), No. 4, p. 60.
|
[61] |
L. Wang, L.H. Chen, H.O. Lv, Development situation of COREX smelting reduction process, J. Shenyang Inst. Eng. Nat. Sci., 2(2006), p. 373.
|
[62] |
L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
|
[63] |
S. Pauliuk, R.L. Milford, D.B. Müller, and J.M. Allwood, The steel scrap age, Environ. Sci. Technol., 47(2013), No. 7, p. 3448. doi: 10.1021/es303149z
|
[64] |
D. Kushnir, T. Hansen, V. Vogl, and M. Åhman, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2020), art. No. 118185. doi: 10.1016/j.jclepro.2019.118185
|
[65] |
V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736. doi: 10.1016/j.jclepro.2018.08.279
|