Huaifang Shangand Dingguo Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 909-916. https://doi.org/10.1007/s12613-022-2482-8
Cite this article as:
Huaifang Shangand Dingguo Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 909-916. https://doi.org/10.1007/s12613-022-2482-8
Research Article

Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation

+ Author Affiliations
  • Corresponding author:

    Dingguo Xia    E-mail: dgxia@pku.edu.cn

  • Received: 31 January 2022Revised: 14 March 2022Accepted: 23 March 2022Available online: 24 March 2022
  • The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries. The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources. Here, we report LiMn2O4 integrated with coating and doping by Sn self-segregation. Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn2O4, with a small Sn doping in the bulk phase. The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese. The as-obtained product demonstrates superior high initial capacities of 124 mAh·g−1 and 120 mAh·g−1 with the capacity retention of 91.1% and 90.2% at 25°C and 55°C after 50 cycles, respectively. This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.
  • loading
  • [1]
    J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
    [2]
    M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561. doi: 10.1002/adma.201800561
    [3]
    L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
    [4]
    Q.K. Du, Q.X. Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
    [5]
    H.P. Yang, H.H. Wu, M.Y. Ge, L.J. Li, Y.F. Yuan, Q. Yao, J. Chen, L.F. Xia, J.M. Zheng, Z.Y. Chen, J.F. Duan, K. Kisslinger, X.C. Zeng, W.K. Lee, Q.B. Zhang, and J. Lu, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater., 29(2019), No. 13, art. No. 1808825. doi: 10.1002/adfm.201808825
    [6]
    L.J. Li, J.X. Chen, H. Huang, L. Tan, L.B. Song, H.H. Wu, C. Wang, Z.X. Zhao, H.L. Yi, J.F. Duan, and T. Dong, Role of residual Li and oxygen vacancies in Ni-rich cathode materials, ACS Appl. Mater. Interfaces, 13(2021), No. 36, p. 42554. doi: 10.1021/acsami.1c06550
    [7]
    K. Turcheniuk, D. Bondarev, V. Singhal, and G. Yushin, Ten years left to redesign lithium-ion batteries, Nature, 559(2018), No. 7715, p. 467. doi: 10.1038/d41586-018-05752-3
    [8]
    M. Freire, N.V. Kosova, C. Jordy, D. Chateigner, O.I. Lebedev, A. Maignan, and V. Pralong, A new active Li–Mn–O compound for high energy density Li-ion batteries, Nat. Mater., 15(2016), No. 2, p. 173. doi: 10.1038/nmat4479
    [9]
    J. Lee, D.A. Kitchaev, D.H. Kwon, C.W. Lee, J.K. Papp, Y.S. Liu, Z.Y. Lun, R.J. Clément, T. Shi, B.D. McCloskey, J.H. Guo, M. Balasubramanian, and G. Ceder, Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials, Nature, 556(2018), No. 7700, p. 185. doi: 10.1038/s41586-018-0015-4
    [10]
    N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
    [11]
    H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, Research on advanced materials for Li-ion batteries, Adv. Mater., 21(2009), No. 45, p. 4593. doi: 10.1002/adma.200901710
    [12]
    F. Li, J. He, J.D. Liu, M.G. Wu, Y.Y. Hou, H.P. Wang, S.H. Qi, Q.H. Liu, J.W. Hu, and J.M. Ma, Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 12, p. 6600. doi: 10.1002/anie.202013993
    [13]
    S.H. Qi, H.P. Wang, J. He, J.D. Liu, C.Y. Cui, M.G. Wu, F. Li, Y.Z. Feng, and J.M. Ma, Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries, Sci. Bull., 66(2021), No. 7, p. 685. doi: 10.1016/j.scib.2020.09.018
    [14]
    D.P. Finegan, A. Vamvakeros, C. Tan, T.M.M. Heenan, S.R. Daemi, N. Seitzman, M.D. Michiel, S. Jacques, A.M. Beale, D.J.L. Brett, P.R. Shearing, and K. Smith, Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Nat. Commun., 11(2020), art. No. 631. doi: 10.1038/s41467-020-14467-x
    [15]
    F.Y. Cheng, H.B. Wang, Z.Q. Zhu, Y. Wang, T.R. Zhang, Z.L. Tao, and J. Chen, Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries, Energy Environ. Sci., 4(2011), No. 9, art. No. 3668. doi: 10.1039/c1ee01795k
    [16]
    G. Zhou, X.R. Sun, Q.H. Li, X.L. Wang, J.N. Zhang, W.L. Yang, X.Q. Yu, R.J. Xiao, and H. Li, Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: In situ ultraviolet–visible spectroscopy and Ab initio molecular dynamics simulations, J. Phys. Chem. Lett., 11(2020), No. 8, p. 3051. doi: 10.1021/acs.jpclett.0c00936
    [17]
    Y.K. Sun, C.S. Yoon, C.K. Kim, S.G. Youn, Y.S. Lee, M. Yoshio, and I.H. Oh, Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling, J. Mater. Chem., 11(2001), No. 10, p. 2519. doi: 10.1039/b103709a
    [18]
    K.R. Ragavendran, P. Mandal, and S. Yarlagadda, Correlation between battery material performance and cooperative electron-phonon interaction in LiCoyMn2−yO4, Appl. Phys. Lett., 110(2017), No. 14, art. No. 143901. doi: 10.1063/1.4979542
    [19]
    S. Lee, Y. Cho, H.K. Song, K.T. Lee, and J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries, Angew. Chem. Int. Ed., 51(2012), No. 35, p. 8748. doi: 10.1002/anie.201203581
    [20]
    D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.L. Peng, R.A. Huggins, and Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes, Nano Lett., 8(2008), No. 11, p. 3948. doi: 10.1021/nl8024328
    [21]
    P.A. Lee and J.B. Pendry, Theory of the extended X-ray absorption fine structure, Phys. Rev. B, 11(1975), No. 8, p. 2795. doi: 10.1103/PhysRevB.11.2795
    [22]
    C.R. Natoli, M. Benfatto, C. Brouder, M.F.R. López, and D.L. Foulis, Multichannel multiple-scattering theory with general potentials, Phys. Rev. B, 42(1990), No. 4, p. 1944. doi: 10.1103/PhysRevB.42.1944
    [23]
    A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson, Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure, Phys. Rev. B, 58(1998), No. 12, p. 7565. doi: 10.1103/PhysRevB.58.7565
    [24]
    T.A. Tyson, K.O. Hodgson, C.R. Natoli, and M. Benfatto, General multiple-scattering scheme for the computation and interpretation of X-ray-absorption fine structure in atomic clusters with applications to SF6, GeCl4, and Br2 molecules, Phys. Rev. B, 46(1992), No. 10, p. 5997. doi: 10.1103/PhysRevB.46.5997
    [25]
    D.W. Shin, J.W. Choi, W.K. Choi, Y.S. Cho, and S.J. Yoon, Improved cycleability of LiMn2O4-based thin films by Sn substitution, Appl. Phys. Lett., 93(2008), No. 6, art. No. 064101. doi: 10.1063/1.2937854
    [26]
    F.L. Du, Z.Y. Guo, and G.C. Li, Hydrothermal synthesis of SnO2 hollow microspheres, Mater. Lett., 59(2005), No. 19-20, p. 2563. doi: 10.1016/j.matlet.2005.03.046
    [27]
    T.T. Fang and H.Y. Chung, Reassessment of the electronic-conduction behavior above the Verwey-like transition of Ni2+- and Al3+-doped LiMn2O4, J. Am. Ceram. Soc., 91(2008), No. 1, p. 342.
    [28]
    W.K. Choi, H.J. Jung, and S.K. Koh, Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition, J. Vac. Sci. Technol. A, 14(1996), No. 2, p. 359. doi: 10.1116/1.579901
    [29]
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
    [30]
    H.R. Taghiyari, K. Mobini, Y.S. Samadi, Z. Doosti, F. Karimi, M. Asghari, A. Jahangiri, and P. Nouri, Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard, J. Nanomater. Mol. Nanotechnol., 2(2013), No. 1, art. No. 1000106.
    [31]
    Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M. Yu, and X.B. Zhao, Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries, Adv. Funct. Mater., 21(2011), No. 2, p. 348. doi: 10.1002/adfm.201001448
    [32]
    P.W. Li, S.H. Luo, J.C. Wang, X. Wang, Y. Tian, H. Li, Q. Wang, Y.H. Zhang, and X. Liu, Preparation and electrochemical properties of Al–F co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery, Int. J. Energy Res., 45(2021), No. 15, p. 21158. doi: 10.1002/er.7169
    [33]
    C. Zhan, X.P. Qiu, J. Lu, and K. Amine, Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery, Adv. Mater. Interfaces, 3(2016), No. 11, art. No. 1500856. doi: 10.1002/admi.201500856
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Share Article

    Article Metrics

    Article Views(1240) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return