Lele Niu, Zhengjian Liu, Jianliang Zhang, Dawei Lan, Sida Li, Zhen Li,  and Yaozu Wang, Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 303-313. https://doi.org/10.1007/s12613-022-2484-6
Cite this article as:
Lele Niu, Zhengjian Liu, Jianliang Zhang, Dawei Lan, Sida Li, Zhen Li,  and Yaozu Wang, Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 303-313. https://doi.org/10.1007/s12613-022-2484-6
Research Article

Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering

+ Author Affiliations
  • Corresponding author:

    Yaozu Wang    E-mail: wgyozu@163.com

  • Received: 1 January 2022Revised: 20 March 2022Accepted: 28 March 2022Available online: 29 March 2022
  • In order to study the sintering characteristics of Ca-rich iron ore, chemical analysis, laser diffraction, scanning electron microscopy, XRD-Rietveld method, and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior. In addition, a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents. The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite (CaCO3) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized. Its application with a 20wt% content in sintering improves sinter productivity, reduces fuel consumption, enhances reduction index, and improves gas permeability in blast furnace by 0.45 t/(m2·h), 6.11 kg/t, 6.17%, and 65.39 kPa·°C, respectively. The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering, which is conducive to recovering heat for secondary use. As the content of the Ca-rich iron ore increases, sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection. Based on an examination of the greater weight value of productivity with grey correlation analysis, the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0–20wt% content. Therefore, it may be used in sintering with magnetite concentrates as the major ore species.
  • loading
  • [1]
    World Steel Association, World Steel in Figures 2017 [2017-05-29]. https://worldsteel.org/zh-hans/steel-topics/statistics/world-steel-in-figures/
    [2]
    X. Bo, Z.L. Li, J.B. Qu, et al., The spatial-temporal pattern of sintered flue gas emissions in iron and steel enterprises of China, J. Cleaner Prod., 266(2020), p. 121667. doi: 10.1016/j.jclepro.2020.121667
    [3]
    L.X. Yang and L. Davis, Assimilation and mineral formation during sintering for blends containing magnetite concentrate and hematite/pisolite sintering fines, ISIJ Int., 39(1999), No. 3, p. 239. doi: 10.2355/isijinternational.39.239
    [4]
    D.H. Liu, H. Liu, J.L. Zhang, et al., Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
    [5]
    H.L. Han and L.M. Lu, Recent advances in sintering with high proportions of magnetite concentrates, Miner. Process. Extr. Metall. Rev., 39(2018), No. 4, p. 217. doi: 10.1080/08827508.2017.1415206
    [6]
    J.M.F. Clout and J.R. Manuel, Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores, Powder Technol., 130(2003), No. 1-3, p. 393. doi: 10.1016/S0032-5910(02)00241-3
    [7]
    V.D.M. Oliveira, V.G. de Resende, A.L.A. Domingues, M.C. Bagatini, and L.F.A. de Castro, Alternative to deal with high level of fine materials in iron ore sintering process, J. Mater. Res. Technol., 8(2019), No. 5, p. 4985. doi: 10.1016/j.jmrt.2019.07.032
    [8]
    T. Jiang, G.H. Li, H.T. Wang, K.C. Zhang, and Y.B. Zhang, Composite agglomeration process (CAP) for preparing blast furnace burden, Ironmaking Steelmaking, 37(2010), No. 1, p. 1. doi: 10.1179/174328109X462995
    [9]
    T. Jiang, L.P. Xu, Q. Zhong, et al., Efficient preparation of blast furnace burdens from titanomagnetite concentrate by composite agglomeration process, JOM, 73(2021), No. 1, p. 326. doi: 10.1007/s11837-020-04480-2
    [10]
    T. Jiang, Z.W. Yu, Z.W. Peng, M.J. Rao, Y.B. Zhang, and G.H. Li, Preparation of BF burden from titanomagnetite concentrate by composite agglomeration process (CAP), ISIJ Int., 55(2015), No. 8, p. 1599. doi: 10.2355/isijinternational.ISIJINT-2015-094
    [11]
    K.I. Higuchi, T. Kawaguchi, M. Kobayashi, et al., Improvement of productivity by stand-support sintering in commercial sintering machines, ISIJ Int., 40(2000), No. 12, p. 1188. doi: 10.2355/isijinternational.40.1188
    [12]
    L. Lu and O. Ishiyama, Recent advances in iron ore sintering, Miner. Process. Extr. Metall., 125(2016), No. 3, p. 132. doi: 10.1080/03719553.2016.1165500
    [13]
    Y.Z. Wang, Z.J. Liu, J.L. Zhang, Y.P. Zhang, L.L. Niu, and Q. Cheng, Study of stand-support sintering to achieve high oxygen potential in iron ore sintering to enhance productivity and reduce CO content in exhaust gas, J. Cleaner Prod., 252(2020), art. No. 119855. doi: 10.1016/j.jclepro.2019.119855
    [14]
    D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja, Iron ore sintering: Environment, automatic, and control techniques, Miner. Process. Extr. Metall. Rev., 38(2017), No. 4, p. 238. doi: 10.1080/08827508.2017.1288118
    [15]
    T.C. Ooi, S. Campbell-Hardwick, D.Q. Zhu, and J. Pan, Sintering performance of magnetite-hematite-goethite and hematite-goethite iron ore blends and microstructure of products of sintering, Miner. Process. Extr. Metall. Rev., 35(2014), No. 4, p. 266. doi: 10.1080/08827508.2013.793681
    [16]
    J.L. Zhang, Z.W. Hu, H.B. Zuo, Z.J. Liu, Z.X. Zhao, and T.J. Yang, Ore blending ratio optimisation for sintering based on iron ore properties and cost, Ironmaking Steelmaking, 41(2014), No. 4, p. 279. doi: 10.1179/1743281213Y.0000000134
    [17]
    N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: New insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1344. doi: 10.1007/s11663-012-9740-5
    [18]
    M.I. Pownceby and J.M.F. Clout, Importance of fine ore chemical composition and high temperature phase relations: Applications to iron ore sintering and pelletising, Miner. Process. Extr. Metall., 112(2003), No. 1, p. 44. doi: 10.1179/037195503225011402
    [19]
    S.W. Kim, J.W. Jeon, I.K. Suh, and S.M. Jung, Improvement of sintering characteristics by selective granulation of high Al2O3 iron ores and ultrafine iron ores, Ironmaking Steelmaking, 43(2016), No. 7, p. 500. doi: 10.1080/03019233.2015.1109293
    [20]
    L.S. Li, J.B. Liu, X.R. Wu, X. Ren, W.B. Bing, and L.S. Wu, Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere, ISIJ Int., 50(2010), No. 2, p. 327. doi: 10.2355/isijinternational.50.327
    [21]
    T. Umadevi, P.C. Mahapatra, and M. Prabhu, Influence of MgO addition on microstructure and properties of low and high silica iron ore sinter, Miner. Process. Extr. Metall., 122(2013), No. 4, p. 238. doi: 10.1179/1743285513Y.0000000046
    [22]
    Y. Hosotani, K. Yamaguchi, T. Orimoto, K.I. Higuchi, T. Kawaguchi, and H. Goto, Development of evaluation method for softening-melting properties of sinter, Tetsu-to-Hagane, 83(1997), No. 2, p. 97. doi: 10.2355/tetsutohagane1955.83.2_97
    [23]
    Y.N. Qie, Q. Lyu, X.J. Liu, et al., Effect of hydrogen addition on softening and melting reduction behaviors of ferrous burden in gas-injection blast furnace, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2622. doi: 10.1007/s11663-018-1299-3
    [24]
    S.L. Wu, Y.N. Lu, Z.B. Hong, and H. Zhou, Improving the softening and melting properties of ferrous burden with high Al2O3 content for blast furnace by ore blending, ISIJ Int., 60(2020), No. 7, p. 1504. doi: 10.2355/isijinternational.ISIJINT-2019-833
    [25]
    S.L. Wu, W. Huang, M.Y. Kou, X.L. Liu, K.P. Du, and K.F. Zhang, Influence of Al2O3 content on liquid phase proportion and fluidity of primary slag and final slag in blast furnace, Steel Res. Int., 86(2015), No. 5, p. 550.[LinkOut]. doi: 10.1002/srin.201400158
    [26]
    Y.X. Xue, J. Pan, D.Q. Zhu, et al., Effect of alumina occurrence on sintering performance of iron ores and its action mechanism, J. Mater. Res. Technol., 12(2021), p. 1157.[LinkOut]. doi: 10.1016/j.jmrt.2021.03.054
    [27]
    D.H. Liu, J.L. Zhang, Z.J. Liu, Y.Z. Wang, X. Xue, and J. Yan, Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores, JOM, 68(2016), No. 9, p. 2418. doi: 10.1007/s11837-016-1989-8
    [28]
    J. E, Y. Zeng, Y. Jin, et al., Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis, Energy, 211(2020), art. No. 118596. doi: 10.1016/j.energy.2020.118596
    [29]
    Z.J. Liu, L.L. Niu, S.J. Zhang, et al., Comprehensive technologies for iron ore sintering with a bed height of 1000 mm to improve sinter quality, enhance productivity and reduce fuel consumption, ISIJ Int., 60(2020), No. 11, p. 2400. doi: 10.2355/isijinternational.ISIJINT-2020-219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(991) PDF Downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return