Shuai Zhang, Yanling Zhang, and Shaowen Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1207-1216. https://doi.org/10.1007/s12613-022-2489-1
Cite this article as:
Shuai Zhang, Yanling Zhang, and Shaowen Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1207-1216. https://doi.org/10.1007/s12613-022-2489-1
Research Article

Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics

+ Author Affiliations
  • Corresponding author:

    Yanling Zhang    E-mail: zhangyanling@metall.ustb.edu.cn

  • Received: 15 January 2022Revised: 30 March 2022Accepted: 31 March 2022Available online: 2 April 2022
  • Augite-based glass ceramics were synthesised using ZnO, FeO, and Fe2O3 as additives, and the spinel formation, matrix structure, crystallisation thermodynamics, and physicochemical properties were investigated. The results showed that oxides resulted in numerous preliminary spinels in the glass matrix. FeO, ZnO, and Fe2O3 influenced the formation of spinel, while FeO simplified the glass network. FeO and ZnO promoted bulk crystallisation of the parent glass. After adding oxides, the grains of augite phase were refined, and the relative quantities of augite crystal planes were also influenced. All samples displayed good mechanical properties and chemical stability. The 2wt% ZnO-doping sample displayed the maximum flexural strength (170.3 MPa). Chromium leaching amount values of all the samples were less than the national standard (1.5 mg/L), confirming the safety of the materials. In conclusion, an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.
  • loading
  • [1]
    A.V. DeCeanne, L.R. Rodrigues, C.J. Wilkinson, J.C. Wilkinson, and E.D. Wilkinson, Examining the role of nucleating agents within glass-ceramic systems, J. Non-Cryst. Solids., 591(2022), p. 121714. doi: 10.1016/j.jnoncrysol.2022.121714
    [2]
    D. He, H. Ma, and H. Zhong, Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics, J. Eur. Ceram. Soc., 41(2021), No. 16, p. 342. doi: 10.1016/j.jeurceramsoc.2021.09.034
    [3]
    J. Zhong, J. Zhang, Y. Yu, H. Bai, Z. Zhang, and Y. Huang, Transparent MgO−Al2O3−SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents, J. Non-Cryst. Solids., 588(2022), p. 121585. doi: 10.1016/j.jnoncrysol.2022.121585
    [4]
    Z. Luo, H. Liang, C. Qin, T. Liu, and A. Liu, Crystallization kinetics and phase formation of Li2O−SiO2−Si3N4 glass-ceramics with P2O5 nucleating agent, J. Alloys Compd., 786(2022), p. 688.
    [5]
    C. Wang, H. Jia, A. Wang, X. Wang, Y. Guo, and J. Zhang, Effect of TiO2 on the crystallization and properties of MgO−Al2O3−SiO2 glass-ceramics prepared by an “one-step" method from laterite ore, Ceram. Int., 45(2019), No. 4, p. 5133. doi: 10.1016/j.ceramint.2018.10.051
    [6]
    L. Deng, R. Jia, F. Yun, X. Zhang, H. Li, M. Zhang, X. Jia, D. Ren, and B. Li, Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag, Mater. Chem. Phys., 240(2020), p. 122212. doi: 10.1016/j.matchemphys.2019.122212
    [7]
    Y. Shi, X.W. Song, and X.X. Han, Catalytic mechanism of iron oxide doping on the crystallization process of Cr2O3-containg glass ceramics, J. Non Cryst. Solids., 570(2021), p. 121002. doi: 10.1016/j.jnoncrysol.2021.121002
    [8]
    G.S. Back, M.J. Yoon, and W.G. Jung, Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2−Al2O3−CaO−MgO glass-ceramic system, Met. Mater. Int., 23(2017), p. 798. doi: 10.1007/s12540-017-6714-9
    [9]
    G.A. Khater, Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag, Ceram. Int., 37(2011), No. 7, p. 2193. doi: 10.1016/j.ceramint.2011.03.011
    [10]
    S. Zhang, Y.L. Zhang, and Z.M. Qu, Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO–MgO–SiO2–(Na2O) glass ceramics with different CaO/MgO ratio, Ceram. Int., 45(2019), No. 9, p. 11216. doi: 10.1016/j.ceramint.2019.02.106
    [11]
    Y. Shi, B.W. Li, M. Zhao, and M.X. Zhang, Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent, J. Am. Ceram. Soc., 101(2018), No. 9, p. 3968. doi: 10.1111/jace.15700
    [12]
    S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060
    [13]
    M.C. Kemei, P.T. Barton, S.L. Moffitt, et al., Crystal structures of spin-Jahn–Teller-ordered MgCr2O4 and ZnCr2O4, J. Phys.: Condens. Matter, 25(2013), No. 32, art. No. 326001.
    [14]
    M. Robbins, G.K. Wertheim, R.C. Sherwood, and D.N.E. Buchanan, Magnetic properties and site distributions in the system FeCr2O4–Fe3O4(Fe2+Cr2−xFe $ {}_x^{3+} $O4), J. Phys. Chem. Solids, 32(1971), No. 3, p. 717. doi: 10.1016/S0022-3697(71)80412-2
    [15]
    M.Z. Zhao, J.W. Cao, Z. Wang, and G.H. Li, Precipitating spinel into precursor glass and its assistance in crystallization, J. Eur. Ceram. Soc., 39(2019), No. 7, p. 2427. doi: 10.1016/j.jeurceramsoc.2019.02.012
    [16]
    J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO–SiO2–MgO–Al2O3–Cr2O3 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 253. doi: 10.1007/s12613-013-0720-9
    [17]
    T. Wu, Y. Zhang, F. Yuan, and Z. An, Effects of the Cr2O3 content on the viscosity of CaO−SiO2−10 Pct Al2O3−Cr2O3 quaternary slag, Metall. Mater. Trans. B., 49(2018), p. 1719. doi: 10.1007/s11663-018-1258-z
    [18]
    Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B., 48(2017), p. 346. doi: 10.1007/s11663-016-0858-8
    [19]
    Q. Li, S. Yang, Y. Zhang, Z. An, and Z. Guo, Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO−SiO2−Al2O3 slags, ISIJ. Int., 57(2017), No. 4, p. 689. doi: 10.2355/isijinternational.ISIJINT-2016-569
    [20]
    S. Zhang, Y. Zhang, S. Wu, Z. Zhao, and Y. Wu, Long-term leaching mechanism of chromium-containing slag after vitrification and heat treatment, Ceram. Int., 48(2022), No. 9, p. 13366. doi: 10.1016/j.ceramint.2022.01.218
    [21]
    F. Yuan, Z. Yuan, Y. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO−SiO2−Cr2O3−Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522. doi: 10.1007/s12613-021-2306-2
    [22]
    Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
    [23]
    Z.W. Wang, P. Lazor, S.K. Saxena, and G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4), J. Solid State Chem., 165(2002), No. 1, p. 165. doi: 10.1006/jssc.2002.9527
    [24]
    W.J. Yong, S. Botis, S.R. Shieh, W.G. Shi, and A.C. Withers, Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction, Phys. Earth Planet. Inter., 196-197(2012), p. 75. doi: 10.1016/j.pepi.2012.02.011
    [25]
    K.F. McCarty and D.R. Boehme, A Raman study of the systems Fe3−xCrxO4 and Fe2−xCrxO3, J. Solid State Chem., 79(1989), No. 1, p. 19. doi: 10.1016/0022-4596(89)90245-4
    [26]
    W. Li, C. Deng, Y. Chen, X. Wang, C. Yu, J. Ding, and H. Zhu, Application of Cr3C2/C composite powders synthesized via molten-salt method in low-carbon MgO−C refractories, Ceram. Int., 48(2022), No. 11, p. 15227. doi: 10.1016/j.ceramint.2022.02.053
    [27]
    J. Yang, B. Liu, S.G. Zhang, and A.A. Volinsky, Glass-ceramics one-step crystallization accomplished by building Ca2+ and Mg2+ fast diffusion layer around diopside crystal, J. Alloys Compd., 688(2016), p. 709. doi: 10.1016/j.jallcom.2016.07.027
    [28]
    N. Saheb, S. Lamara, F. Lamara, and S.F. Hassan, Kinetics of α-cordierite formation from nano-oxide powders, Ceram. Int., 48(2022), No. 16, p. 23921. doi: 10.1016/j.ceramint.2022.05.065
    [29]
    Y. Li, D. Cao, Y. Zhang, and X. Jia, Performance of a dry-method-epoxy modifier and a modified epoxy-asphalt mixture, Constr. Build. Mater., 266(2021), p. 120229. doi: 10.1016/j.conbuildmat.2020.120229
    [30]
    J.A. Augis and J.E. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Therm. Anal., 13(1978), No. 2, p. 283. doi: 10.1007/BF01912301
    [31]
    A. Karamanov and M. Pelino, Crystallization phenomena in iron-rich glasses, J. Non Cryst. Solids, 281(2001), No. 1-3, p. 139. doi: 10.1016/S0022-3093(00)00436-1
    [32]
    M.R. Boudchicha, F. Rubio, and S. Achour, Synthesis of glass ceramics from Kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 194. doi: 10.1007/s12613-017-1395-4
    [33]
    H.P. Liu, X.F. Huang, L.P. Ma, D.L. Chen, Z.B. Shang, and M. Jiang, Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 316. doi: 10.1007/s12613-017-1410-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Share Article

    Article Metrics

    Article Views(678) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return