Cite this article as: |
Yuanyuan Zhou, Zhongyi Bai, Xiangyang Yang, Wei Liu, Bingbing Fan, Zhikai Yan, and Xiaoqin Guo, In-situ grown NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 515-524. https://doi.org/10.1007/s12613-022-2496-2 |
Bingbing Fan E-mail: fanbingbing@zzu.edu.cn
Xiaoqin Guo E-mail: guoxq@zua.edu.cn
[1] |
P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
|
[2] |
Y.F. Zhang, Z. Ji, K. Chen, C.C. Jia, S.W. Yang, and M.Y. Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 216. doi: 10.1007/s12613-017-1398-1
|
[3] |
H.L. Lv, Z.H. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), No. 1, p. 1. doi: 10.1038/s41467-020-20314-w
|
[4] |
Y. Li, Y.C. Qing, Y.F. Zhou, et al., Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption, Composites Part B, 213(2021), art. No. 108731. doi: 10.1016/j.compositesb.2021.108731
|
[5] |
B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 8(2016), No. 42, p. 28917. doi: 10.1021/acsami.6b10886
|
[6] |
Q.H. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486. doi: 10.1002/adma.201503149
|
[7] |
J.W. Liu, R.C. Che, H.J. Chen, et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells, Small, 8(2012), No. 8, p. 1214. doi: 10.1002/smll.201102245
|
[8] |
B. Zhao, Y. Li, Q.W. Zeng, et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties, Small, 16(2020), No. 40, art. No. 2003502. doi: 10.1002/smll.202003502
|
[9] |
B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties, Nano Res., 10(2017), No. 1, p. 331. doi: 10.1007/s12274-016-1295-3
|
[10] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401. doi: 10.1002/adma.200306460
|
[11] |
B. Zhao, Y. Li, H.Y. Ji, et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption, Carbon, 176(2021), p. 411. doi: 10.1016/j.carbon.2021.01.136
|
[12] |
N. Zhang, Y. Huang, M.Y. Wang, X.D. Liu, and M. Zong, Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites, J. Colloid Interface Sci., 534(2019), p. 110. doi: 10.1016/j.jcis.2018.09.016
|
[13] |
H. Wang, Y.Y. Dai, W.J. Gong, et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances, Appl. Phys. Lett., 102(2013), No. 22, art. No. 223113. doi: 10.1063/1.4809675
|
[14] |
Z.C. Lou, Q.Y. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano Micro Lett., 14(2021), No. 1, p. 1.
|
[15] |
Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
|
[16] |
Y. Wu, R.W. Shu, Z.Y. Li, et al., Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites, J. Alloys Compd., 784(2019), p. 887. doi: 10.1016/j.jallcom.2019.01.139
|
[17] |
H. Sun, R.C. Che, X. You, et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater., 26(2014), No. 48, p. 8120. doi: 10.1002/adma.201403735
|
[18] |
B. Zhao, J.S. Deng, C.X. Zhao, et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure, J. Mater. Chem. C, 8(2020), No. 1, p. 58. doi: 10.1039/C9TC04575A
|
[19] |
T.S. Liu, N. Liu, S.R. Zhai, et al., Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance, J. Alloys Compd., 779(2019), p. 831. doi: 10.1016/j.jallcom.2018.11.167
|
[20] |
X.Y. Wu, B.Y. Han, H.B. Zhang, et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding, Chem. Eng. J., 381(2020), art. No. 122622. doi: 10.1016/j.cej.2019.122622
|
[21] |
X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030. doi: 10.1007/s42114-021-00415-w
|
[22] |
M.A. Aslam, W. Ding, S. ur Rehman, et al., Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance, Appl. Surf. Sci., 543(2021), art. No. 148785. doi: 10.1016/j.apsusc.2020.148785
|
[23] |
Y.Y. Wang, Z.H. Zhou, J.L. Zhu, et al., Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption, Composites Part B, 220(2021), art. No. 108985. doi: 10.1016/j.compositesb.2021.108985
|
[24] |
H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G. Ji, and Y.W. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon, ACS Sustain. Chem. Eng., 6(2018), No. 11, p. 15850. doi: 10.1021/acssuschemeng.8b04461
|
[25] |
X.X. Sun, M.L. Yang, S. Yang, et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure, Small, 15(2019), No. 43, art. No. 1902974. doi: 10.1002/smll.201902974
|
[26] |
G.J. Gou, F.B. Meng, H.G. Wang, M. Jiang, W. Wei, and Z.W. Zhou, Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption, Nano Res., 12(2019), No. 6, p. 1423. doi: 10.1007/s12274-019-2376-x
|
[27] |
H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, and Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber, Chem. Eng. J., 339(2018), p. 432. doi: 10.1016/j.cej.2018.01.151
|
[28] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, and Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption, Carbon, 142(2019), p. 245. doi: 10.1016/j.carbon.2018.10.027
|
[29] |
P.F. Yin, L.M. Zhang, Y.Y. Jiang, et al., Recycling of waste straw in sorghum for preparation of biochar/(Fe,Ni) hybrid aimed at significant electromagnetic absorbing of low-frequency band, J. Mater. Res. Technol., 9(2020), No. 6, p. 14212. doi: 10.1016/j.jmrt.2020.10.034
|
[30] |
J. Cui, X.H. Wang, L. Huang, C.W. Zhang, Y. Yuan, and Y.B. Li, Environmentally friendly bark-derived Co-Doped porous carbon composites for microwave absorption, Carbon, 187(2022), p. 115. doi: 10.1016/j.carbon.2021.10.077
|
[31] |
B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, and R. Zhang, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties, J. Mater. Chem. A, 3(2015), No. 19, p. 10345. doi: 10.1039/C5TA00086F
|
[32] |
J. Feng, F.Z. Pu, Z.X. Li, X.H. Li, X.Y. Hu, and J.T. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber, Carbon, 104(2016), p. 214. doi: 10.1016/j.carbon.2016.04.006
|
[33] |
L.L. Liang, Z.Q. Zhang, F. Song, et al., Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption, Carbon, 162(2020), p. 283. doi: 10.1016/j.carbon.2020.02.045
|
[34] |
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, and R.B. Wu, An electrical switch-driven flexible electromagnetic absorber, Adv. Funct. Mater., 30(2020), No. 4, art. No. 1907251. doi: 10.1002/adfm.201907251
|
[35] |
Y.C. Qing, Y. Li, W. Li, and H.Y. Yao, Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications, J. Mater. Chem. C, 9(2021), No. 4, p. 1205. doi: 10.1039/D0TC05112H
|
[36] |
X.F. Zhang, P.F. Guan, and X.L. Dong, Transform between the permeability and permittivity in the close-packed Ni nanoparticles, Appl. Phys. Lett., 97(2010), No. 3, art. No. 033107. doi: 10.1063/1.3464975
|
[37] |
Z.X. Yu, N. Zhang, Z.P. Yao, X.J. Han, and Z.H. Jiang, Synthesis of hierarchical dendritic micro-nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance, J. Mater. Chem. A, 1(2013), No. 40, p. 12462. doi: 10.1039/c3ta12840g
|
[38] |
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, and R.C. Che, Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901448. doi: 10.1002/adfm.201901448
|
[39] |
R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426. doi: 10.1039/C5TA01457C
|
[40] |
X. Wen, L.Z. Hou, L.W. Deng, D.T. Kuang, H. Luo, and S.L. Wang, Facile fabrication of extremely small CoNi/C core/shell nanoparticles for efficient microwave absorber, Nano, 14(2019), No. 7, art. No. 1950090. doi: 10.1142/S1793292019500905
|
[41] |
H.L. Lv, Z.H. Yang, S.J.H. Ong, et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900163. doi: 10.1002/adfm.201900163
|
[42] |
C. Zhang, C. Long, S. Yin, et al., Graphene-based anisotropic polarization meta-filter, Mater. Des., 206(2021), art. No. 109768. doi: 10.1016/j.matdes.2021.109768
|
[43] |
Z.C. Lou, Q.Y. Wang, Y. Zhang, et al., In-situ formation of low-dimensional, magnetic core–shell nanocrystal for electromagnetic dissipation, Composites Part B, 214(2021), art. No. 108744. doi: 10.1016/j.compositesb.2021.108744
|
[44] |
M.L. Yang, Y. Yuan, W.L. Yin, et al., Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption, Appl. Surf. Sci., 469(2019), p. 607. doi: 10.1016/j.apsusc.2018.10.045
|
[45] |
B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, and K.J. Chen, Co/C composite derived from a newly constructed metal–organic framework for effective microwave absorption, Cryst. Growth Des., 19(2019), No. 3, p. 1518. doi: 10.1021/acs.cgd.9b00064
|
[46] |
Z. Zheng, B. Xu, L. Huang, L. He, and X.M. Ni, Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties, Solid State Sci., 10(2008), No. 3, p. 316. doi: 10.1016/j.solidstatesciences.2007.09.016
|
[47] |
F.S. Wen, F. Zhang, and Z.Y. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers, J. Phys. Chem. C, 115(2011), No. 29, p. 14025. doi: 10.1021/jp202078p
|
[48] |
W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, and G.B. Ji, A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites, ACS Appl. Mater. Interfaces, 10(2018), No. 10, p. 8965. doi: 10.1021/acsami.8b00320
|
[49] |
X.M. Zhang, G.B. Ji, W. Liu, et al., Thermal conversion of an Fe3O4@metal–organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material, Nanoscale, 7(2015), No. 30, p. 12932. doi: 10.1039/C5NR03176A
|
[50] |
J. Lv, X.H. Liang, G.B. Ji, B. Quan, W. Liu, and Y.W. Du, Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7239. doi: 10.1021/acssuschemeng.7b03807
|
[51] |
H.F. Qiu, X.Y. Zhu, P. Chen, J.L. Liu, and X.L. Zhu, Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni–Co alloy for high-performance electromagnetic microwave absorption, Compos. Commun., 20(2020), art. No. 100354. doi: 10.1016/j.coco.2020.04.020
|
[52] |
A. Das, P. Negi, S.K. Joshi, and A. Kumar, Enhanced microwave absorption properties of Co and Ni co-doped iron (II, III)/reduced graphene oxide composites at X-band frequency, J. Mater. Sci. Mater. Electron., 30(2019), No. 21, p. 19325. doi: 10.1007/s10854-019-02293-x
|
[53] |
X.L. Wu, K. Liu, J.W. Ding, et al., Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: Effective microwave absorption application, Adv. Compos. Hybrid Mater., 5(2022), 3, p. 2260. doi: 10.1007/s42114-021-00383-1
|
[54] |
Z.B. Su, J. Tao, J.Y. Xiang, Y. Zhang, C. Su, and F.S. Wen, Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres, Mater. Res. Bull., 84(2016), p. 445. doi: 10.1016/j.materresbull.2016.08.036
|
[55] |
H.L. Lv, Z.H. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343. doi: 10.1002/adma.201706343
|
[56] |
Y. Li, Y.C. Qing, B. Zhao, et al., Tunable magnetic coupling and dipole polarization of core-shell Magnéli Ti4O7 ceramic/magnetic metal possessing broadband microwave absorption properties, Ceram. Int., 47(2021), No. 23, p. 33373. doi: 10.1016/j.ceramint.2021.08.240
|
[57] |
H. Du, Q.P. Zhang, B. Zhao, et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties, J. Adv. Ceram., 10(2021), No. 5, p. 1042. doi: 10.1007/s40145-021-0487-9
|