You Zhou, Hongpeng Wang, Dan Wang, Xianfeng Yang, Hongna Xing, Juan Feng, Yan Zong, Xiuhong Zhu, Xinghua Li,  and Xinliang Zheng, Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 474-484. https://doi.org/10.1007/s12613-022-2499-z
Cite this article as:
You Zhou, Hongpeng Wang, Dan Wang, Xianfeng Yang, Hongna Xing, Juan Feng, Yan Zong, Xiuhong Zhu, Xinghua Li,  and Xinliang Zheng, Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 474-484. https://doi.org/10.1007/s12613-022-2499-z
Research Article

Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity

+ Author Affiliations
  • Corresponding author:

    Xinghua Li    E-mail: xinghua.li@nwu.edu.cn

  • Received: 22 March 2022Revised: 8 April 2022Accepted: 11 April 2022Available online: 15 April 2022
  • Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents. Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently required. Herein, utilizing the low boiling point of Zn, porous N-doped carbon was fabricated by carbonization of ZIF-8 (Zn) at different temperature, and the microwave absorption performance was investigated. The porous N-doped carbon inherits the high porosity of ZIF-8 precursor. By increasing the carbonization temperature, the contents of Zn and N elements are decreased; the graphitization degree is improved; however, the specific surface area and porosity are increased first and then decreased. When the carbonization temperature is 1000°C, the porous N-doped carbon behaves enhanced microwave absorption. With an ultrathin thickness of 1.29 mm, the ideal RL reaches −50.57 dB at 16.95 GHz and the effective absorption bandwidth is 4.17 GHz. The mechanism of boosted microwave absorption is ascribed to the competition of graphitization and porosity as well as N dopants, resulting in high dielectric loss capacity and good impedance matching. The porous structure can prolong the pathways and raise the contact opportunity between microwaves and porous carbon, causing multiple scattering, interface polarization, and improved impedance matching. Besides, the N dopants can induce electron polarization and defect polarization. These results give a new insight to construct lightweight carbon-based microwave absorbents by regulating the graphitization and porosity.
  • loading
  • Supplementary Informations-IJM-03-2022-0273.doc
  • [1]
    N.N. Wu, Q. Hu, R.B. Wei, et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects, Carbon, 176(2021), p. 88. doi: 10.1016/j.carbon.2021.01.124
    [2]
    X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, and H.J. Wu, Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber, J. Colloid Interface Sci., 602(2021), p. 834. doi: 10.1016/j.jcis.2021.06.083
    [3]
    M. L. Ma, W. T. Li, Z. Y. Tong, et al., Facile synthesis of the one-dimensional flower-like yolk–shell Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption, J. Alloys Compd., 843(2020), art. No. 155199. doi: 10.1016/j.jallcom.2020.155199
    [4]
    T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
    [5]
    W.B. Huang, Z.Y. Tong, R.Z. Wang, et al., A review on electrospinning nanofibers in the field of microwave absorption, Ceram. Int., 46(2020), p. 26441. doi: 10.1016/j.ceramint.2020.07.193
    [6]
    X.J. Zeng, X.Y. Cheng, R.H. Yu, and G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers, Carbon, 168(2020), p. 606. doi: 10.1016/j.carbon.2020.07.028
    [7]
    Y. Liu, Z. R. Jia, Q.Q. Zhan, et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
    [8]
    J. Yan, Y. Huang, X.D. Liu, et al., Polypyrrole-based composite materials for electromagnetic wave absorption, Polym. Rev., 61(2021), No. 3, p. 646. doi: 10.1080/15583724.2020.1870490
    [9]
    T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
    [10]
    D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, and F.B. Meng, A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption, Composites Part B, 211(2021), art. No. 108642. doi: 10.1016/j.compositesb.2021.108642
    [11]
    Y. Liu, X.H. Liu, X.Y. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
    [12]
    X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, and H.J. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene, J. Mater. Sci. Technol., 115(2022), p. 148. doi: 10.1016/j.jmst.2021.11.029
    [13]
    Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, Q.Y. Zhang, and B.L. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave, Carbon, 172(2021), p. 1. doi: 10.1016/j.carbon.2020.09.093
    [14]
    L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
    [15]
    R.W. Shu, Z.L. Wan, J.B. Zhang, et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers, ACS Appl. Mater. Interfaces, 12(2020), No. 4, p. 4689. doi: 10.1021/acsami.9b16134
    [16]
    B.D. Che, B.Q. Nguyen, L.T.T. Nguyen, et al., The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites, Chem. Central J., 9(2015), No. 1, p. 1. doi: 10.1186/s13065-014-0076-x
    [17]
    G.M. Li, L.C. Wang, W.X. Li, and Y. Xu, Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents, Chemphyschem, 16(2015), No. 16, p. 3458. doi: 10.1002/cphc.201500608
    [18]
    W.X. Li, L.C. Wang, G.M. Li, and Y. Xu, Single-crystal octahedral CoFe2O4 nanoparticles loaded on carbon balls as a lightweight microwave absorbent, J. Alloys Compd., 633(2015), p. 11. doi: 10.1016/j.jallcom.2015.02.006
    [19]
    Y.Y. Gu, P. Dai, W. Zhang, and Z.W. Su, Fish bone-derived interconnected carbon nanofibers for efficient and lightweight microwave absorption, SN Appl. Sci., 3(2021), No. 2, p. 1. doi: 10.36870/japps.v3i2.245
    [20]
    K. Nasouri, A.M. Shoushtari, J. Mirzaei, and A.A. Merati, Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications, Diam. Relat. Mater., 107(2020), art. No. 107896. doi: 10.1016/j.diamond.2020.107896
    [21]
    D. Gunwant and A. Vedrtnam, Microwave absorbing properties of carbon fiber based materials: A review and prospective, J. Alloys Compd., 881(2021), art. No. 160572. doi: 10.1016/j.jallcom.2021.160572
    [22]
    J.B. Cheng, H.G. Shi, M. Cao, et al, Porous carbon materials for microwave absorption, Mater. Adv., 1(2020), No. 8, p. 2631. doi: 10.1039/D0MA00662A
    [23]
    C.L. Hu, H.P. Liu, Y.H. Zhang, et al., Tuning microwave absorption properties of multi-walled carbon nanotubes by surface functional groups, J. Mater. Sci., 54(2019), No. 3, p. 2417. doi: 10.1007/s10853-018-2895-y
    [24]
    S.K. Singh, M.J. Akhtar, and K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: Ultra lightweight, thin, and highly efficient microwave absorber, ACS Appl. Mater. Interfaces, 10(2018), No. 29, p. 24816. doi: 10.1021/acsami.8b06673
    [25]
    M.A. Aslam, W. Ding, S. ur Rehman, et al., Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance, Appl. Surf. Sci., 543(2021), art. No. 148785. doi: 10.1016/j.apsusc.2020.148785
    [26]
    L. Chai, Y.Q. Wang, and N.F. Zhou, et al., In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber, J. Colloid Interface Sci., 581(2021), p. 475. doi: 10.1016/j.jcis.2020.07.102
    [27]
    X. Wu, K. Liu, J. W. Ding, et al., Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: effective microwave absorption application, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2276. doi: 10.1007/s42114-021-00383-1
    [28]
    Z.C. Wu, K. Pei, L. Xing, et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901448. doi: 10.1002/adfm.201901448
    [29]
    X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
    [30]
    Y. Cheng, J.M. Cao, Y. Li, et al., The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 1, p. 1427. doi: 10.1021/acssuschemeng.7b03846
    [31]
    L.X. Wang, P.P. Zhou, Y. Guo, et al., The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon, RSC Adv., 9(2019), No. 17, p. 9718. doi: 10.1039/C8RA09932D
    [32]
    Z.C. Wu, K. Tian, T. Huang, et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11108. doi: 10.1021/acsami.7b17264
    [33]
    X.M. Huang, X.H. Liu, Z.R. Jia, et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
    [34]
    Y. Cheng, H.Q. Zhao, Y. Zhao, et al., Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response, Carbon, 161(2020), p. 870. doi: 10.1016/j.carbon.2020.02.011
    [35]
    Q.L. Wu, H.H. Jin, B. Zhang, et al., Facile synthesis of cobalt-doped porous composites with amorphous carbon/Zn shell for high-performance microwave absorption, Nanomaterials, 10(2020), No. 2, art. No. 330. doi: 10.3390/nano10020330
    [36]
    X.F. Yang, Y. Zhou, H.N. Xing, et al., MIL-88B (Fe) driven Fe/Fe3C encapsulated in high-crystalline carbon for high-efficient microwave absorption and electromagnetic interference shielding, J. Phys. D: Appl. Phys., 55(2022), No. 14, art. No. 145003. doi: 10.1088/1361-6463/ac3e29
    [37]
    X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber, J. Colloid. Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
    [38]
    R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, and G.Y. Zhang, Nitrogen-doped Co–C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band, Chem. Eng. J., 362(2019), p. 513. doi: 10.1016/j.cej.2019.01.090
    [39]
    C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
    [40]
    R.W. Shu, N.N. Li, X.H. Li, and J.J. Sun, Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness, J. Colloid Interface Sci., 606(2022), p. 1918. doi: 10.1016/j.jcis.2021.10.011
    [41]
    Z.X. Zhang, X.S. Luo, B. Wang, and J.B. Zhang, Electron transport improvement of perovskite solar cells via a ZIF-8-derived porous carbon skeleton, ACS Appl. Energy Mater., 2(2019), No. 4, p. 2760. doi: 10.1021/acsaem.9b00098
    [42]
    J.H. Wang, C. Cai, Z.J. Zhang, C.L. Li, and R. Liu, Electrospun metal-organic frameworks with polyacrylonitrile as precursors to hierarchical porous carbon and composite nanofibers for adsorption and catalysis, Chemosphere, 239(2020), art. No. 124833. doi: 10.1016/j.chemosphere.2019.124833
    [43]
    V. Anh Tran, K.B. Vu, T.T. Thi Vo, et al., Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8, Appl. Surf. Sci., 538(2021), art. No. 148065. doi: 10.1016/j.apsusc.2020.148065
    [44]
    S. Lim, S.H. Yoon, I. Mochida, and D.H. Jung, Direct synthesis and structural analysis of nitrogen-doped carbon nanofibers, Langmuir, 25(2009), No. 14, p. 8268. doi: 10.1021/la900472d
    [45]
    Y.L. Wen, X.C. Chen, and E. Mijowska, Insight into the dependence of particle size of ZIF-8 on the performance in nanocarbon-based supercapacitors, Chem. Eur. J., 26(2020), No. 69, p. 16328. doi: 10.1002/chem.202001979
    [46]
    W. Zhang, Z.Y. Wu, H.L. Jiang, and S.H. Yu, Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis, J. Am. Chem. Soc., 136(2014), No. 41, p. 14385. doi: 10.1021/ja5084128
    [47]
    W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N,S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397. doi: 10.1016/j.electacta.2013.06.065
    [48]
    W. Feng, Y. Zhou, H.N. Xing, et al., Hydrothermal synthesis of nitrogen-doped graphene as lightweight and high-efficient electromagnetic wave absorbers, J. Mater. Sci. Mater. Electron., 32(2021), No. 21, p. 26116. doi: 10.1007/s10854-021-06340-4
    [49]
    Z.X. Li, X.H. Li, Y. Zong, et al., Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers, Carbon, 115(2017), p. 493. doi: 10.1016/j.carbon.2017.01.036
    [50]
    Y. Sun, Y.J. Wang, H.J. Ma, et al., Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance, Carbon, 178(2021), p. 515. doi: 10.1016/j.carbon.2021.03.032
    [51]
    J.L. Li, C.Y. Li, S.Q. Feng, et al., Atomically dispersed Zn-Nx sites in N-doped carbon for reductive N-formylation of nitroarenes with formic acid, ChemCatChem, 12(2020), No. 6, p. 1546. doi: 10.1002/cctc.201902109
    [52]
    G. Li, T.S. Xie, S.L. Yang, J.H. Jin, and J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers, J. Phys. Chem. C, 116(2012), No. 16, p. 9196. doi: 10.1021/jp300050u
    [53]
    T.Q. Hou, Z.R. Jia, S.Q. He, et al., Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption, J. Colloid Interface Sci., 583(2021), p. 321. doi: 10.1016/j.jcis.2020.09.054
    [54]
    J. Feng, Y. Zong, Y. Sun, et al, Optimization of porous FeNi3/N–GN composites with superior microwave absorption performance, Chem. Eng. J., 345(2018), p. 441. doi: 10.1016/j.cej.2018.04.006
    [55]
    Y.J. Wang, Y. Sun, Y. Zong, et al., Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance, J. Alloys Compd., 824(2020), art. No. 153980. doi: 10.1016/j.jallcom.2020.153980
    [56]
    X.H. Li, J. Feng, Y.P. Du, et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber, J. Mater. Chem. A, 3(2015), No. 10, p. 5535. doi: 10.1039/C4TA05718J
    [57]
    M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2103436. doi: 10.1002/adfm.202103436
    [58]
    X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030. doi: 10.1007/s42114-021-00415-w
    [59]
    H.P. Wang, Y. Zhou, H.N. Xing, et al., Construction of flower-like core–shell Fe3O4@2H–MoS2 heterostructures: Boosting the interfacial polarization for high-performance microwave absorption, Ceram. Int., 48(2022), No. 7, p. 9918. doi: 10.1016/j.ceramint.2021.12.196
    [60]
    D.Q. Zhang, H.H. Wang, J.Y. Cheng, et al., Conductive WS2–NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance, Appl. Surf. Sci., 528(2020), art. No. 147052. doi: 10.1016/j.apsusc.2020.147052
    [61]
    Y. Sun, J.W. Zhang, Y. Zong, et al., Crystalline-amorphous permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents, ACS Appl. Mater. Interfaces, 11(2019), No. 6, p. 6374. doi: 10.1021/acsami.8b18875
    [62]
    Y. Sun, B. Zhou, H.P. Wang, et al., Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core–shell FeCo@Fe3O4 nanoparticle for improved microwave absorption, Carbon, 186(2022), p. 333. doi: 10.1016/j.carbon.2021.10.053
    [63]
    C.H. Sun, Z.R. Jia, S. Xu, et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
    [64]
    R.W. Shu, X.H. Li, K.H. Tian, and J.J. Shi, Fabrication of bimetallic metal-organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers, Composites Part B, 228(2022), art. No. 109423. doi: 10.1016/j.compositesb.2021.109423
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1571) PDF Downloads(119) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return