Cite this article as: |
You Zhou, Hongpeng Wang, Dan Wang, Xianfeng Yang, Hongna Xing, Juan Feng, Yan Zong, Xiuhong Zhu, Xinghua Li, and Xinliang Zheng, Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 474-484. https://doi.org/10.1007/s12613-022-2499-z |
Xinghua Li E-mail: xinghua.li@nwu.edu.cn
Supplementary Informations-IJM-03-2022-0273.doc |
[1] |
N.N. Wu, Q. Hu, R.B. Wei, et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects, Carbon, 176(2021), p. 88. doi: 10.1016/j.carbon.2021.01.124
|
[2] |
X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, and H.J. Wu, Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber, J. Colloid Interface Sci., 602(2021), p. 834. doi: 10.1016/j.jcis.2021.06.083
|
[3] |
M. L. Ma, W. T. Li, Z. Y. Tong, et al., Facile synthesis of the one-dimensional flower-like yolk–shell Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption, J. Alloys Compd., 843(2020), art. No. 155199. doi: 10.1016/j.jallcom.2020.155199
|
[4] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
|
[5] |
W.B. Huang, Z.Y. Tong, R.Z. Wang, et al., A review on electrospinning nanofibers in the field of microwave absorption, Ceram. Int., 46(2020), p. 26441. doi: 10.1016/j.ceramint.2020.07.193
|
[6] |
X.J. Zeng, X.Y. Cheng, R.H. Yu, and G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers, Carbon, 168(2020), p. 606. doi: 10.1016/j.carbon.2020.07.028
|
[7] |
Y. Liu, Z. R. Jia, Q.Q. Zhan, et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
|
[8] |
J. Yan, Y. Huang, X.D. Liu, et al., Polypyrrole-based composite materials for electromagnetic wave absorption, Polym. Rev., 61(2021), No. 3, p. 646. doi: 10.1080/15583724.2020.1870490
|
[9] |
T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
|
[10] |
D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, and F.B. Meng, A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption, Composites Part B, 211(2021), art. No. 108642. doi: 10.1016/j.compositesb.2021.108642
|
[11] |
Y. Liu, X.H. Liu, X.Y. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
|
[12] |
X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, and H.J. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene, J. Mater. Sci. Technol., 115(2022), p. 148. doi: 10.1016/j.jmst.2021.11.029
|
[13] |
Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, Q.Y. Zhang, and B.L. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave, Carbon, 172(2021), p. 1. doi: 10.1016/j.carbon.2020.09.093
|
[14] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
|
[15] |
R.W. Shu, Z.L. Wan, J.B. Zhang, et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers, ACS Appl. Mater. Interfaces, 12(2020), No. 4, p. 4689. doi: 10.1021/acsami.9b16134
|
[16] |
B.D. Che, B.Q. Nguyen, L.T.T. Nguyen, et al., The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites, Chem. Central J., 9(2015), No. 1, p. 1. doi: 10.1186/s13065-014-0076-x
|
[17] |
G.M. Li, L.C. Wang, W.X. Li, and Y. Xu, Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents, Chemphyschem, 16(2015), No. 16, p. 3458. doi: 10.1002/cphc.201500608
|
[18] |
W.X. Li, L.C. Wang, G.M. Li, and Y. Xu, Single-crystal octahedral CoFe2O4 nanoparticles loaded on carbon balls as a lightweight microwave absorbent, J. Alloys Compd., 633(2015), p. 11. doi: 10.1016/j.jallcom.2015.02.006
|
[19] |
Y.Y. Gu, P. Dai, W. Zhang, and Z.W. Su, Fish bone-derived interconnected carbon nanofibers for efficient and lightweight microwave absorption, SN Appl. Sci., 3(2021), No. 2, p. 1. doi: 10.36870/japps.v3i2.245
|
[20] |
K. Nasouri, A.M. Shoushtari, J. Mirzaei, and A.A. Merati, Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications, Diam. Relat. Mater., 107(2020), art. No. 107896. doi: 10.1016/j.diamond.2020.107896
|
[21] |
D. Gunwant and A. Vedrtnam, Microwave absorbing properties of carbon fiber based materials: A review and prospective, J. Alloys Compd., 881(2021), art. No. 160572. doi: 10.1016/j.jallcom.2021.160572
|
[22] |
J.B. Cheng, H.G. Shi, M. Cao, et al, Porous carbon materials for microwave absorption, Mater. Adv., 1(2020), No. 8, p. 2631. doi: 10.1039/D0MA00662A
|
[23] |
C.L. Hu, H.P. Liu, Y.H. Zhang, et al., Tuning microwave absorption properties of multi-walled carbon nanotubes by surface functional groups, J. Mater. Sci., 54(2019), No. 3, p. 2417. doi: 10.1007/s10853-018-2895-y
|
[24] |
S.K. Singh, M.J. Akhtar, and K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: Ultra lightweight, thin, and highly efficient microwave absorber, ACS Appl. Mater. Interfaces, 10(2018), No. 29, p. 24816. doi: 10.1021/acsami.8b06673
|
[25] |
M.A. Aslam, W. Ding, S. ur Rehman, et al., Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance, Appl. Surf. Sci., 543(2021), art. No. 148785. doi: 10.1016/j.apsusc.2020.148785
|
[26] |
L. Chai, Y.Q. Wang, and N.F. Zhou, et al., In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber, J. Colloid Interface Sci., 581(2021), p. 475. doi: 10.1016/j.jcis.2020.07.102
|
[27] |
X. Wu, K. Liu, J. W. Ding, et al., Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: effective microwave absorption application, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2276. doi: 10.1007/s42114-021-00383-1
|
[28] |
Z.C. Wu, K. Pei, L. Xing, et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901448. doi: 10.1002/adfm.201901448
|
[29] |
X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
|
[30] |
Y. Cheng, J.M. Cao, Y. Li, et al., The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 1, p. 1427. doi: 10.1021/acssuschemeng.7b03846
|
[31] |
L.X. Wang, P.P. Zhou, Y. Guo, et al., The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon, RSC Adv., 9(2019), No. 17, p. 9718. doi: 10.1039/C8RA09932D
|
[32] |
Z.C. Wu, K. Tian, T. Huang, et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11108. doi: 10.1021/acsami.7b17264
|
[33] |
X.M. Huang, X.H. Liu, Z.R. Jia, et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[34] |
Y. Cheng, H.Q. Zhao, Y. Zhao, et al., Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response, Carbon, 161(2020), p. 870. doi: 10.1016/j.carbon.2020.02.011
|
[35] |
Q.L. Wu, H.H. Jin, B. Zhang, et al., Facile synthesis of cobalt-doped porous composites with amorphous carbon/Zn shell for high-performance microwave absorption, Nanomaterials, 10(2020), No. 2, art. No. 330. doi: 10.3390/nano10020330
|
[36] |
X.F. Yang, Y. Zhou, H.N. Xing, et al., MIL-88B (Fe) driven Fe/Fe3C encapsulated in high-crystalline carbon for high-efficient microwave absorption and electromagnetic interference shielding, J. Phys. D: Appl. Phys., 55(2022), No. 14, art. No. 145003. doi: 10.1088/1361-6463/ac3e29
|
[37] |
X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber, J. Colloid. Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
|
[38] |
R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, and G.Y. Zhang, Nitrogen-doped Co–C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band, Chem. Eng. J., 362(2019), p. 513. doi: 10.1016/j.cej.2019.01.090
|
[39] |
C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
|
[40] |
R.W. Shu, N.N. Li, X.H. Li, and J.J. Sun, Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness, J. Colloid Interface Sci., 606(2022), p. 1918. doi: 10.1016/j.jcis.2021.10.011
|
[41] |
Z.X. Zhang, X.S. Luo, B. Wang, and J.B. Zhang, Electron transport improvement of perovskite solar cells via a ZIF-8-derived porous carbon skeleton, ACS Appl. Energy Mater., 2(2019), No. 4, p. 2760. doi: 10.1021/acsaem.9b00098
|
[42] |
J.H. Wang, C. Cai, Z.J. Zhang, C.L. Li, and R. Liu, Electrospun metal-organic frameworks with polyacrylonitrile as precursors to hierarchical porous carbon and composite nanofibers for adsorption and catalysis, Chemosphere, 239(2020), art. No. 124833. doi: 10.1016/j.chemosphere.2019.124833
|
[43] |
V. Anh Tran, K.B. Vu, T.T. Thi Vo, et al., Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8, Appl. Surf. Sci., 538(2021), art. No. 148065. doi: 10.1016/j.apsusc.2020.148065
|
[44] |
S. Lim, S.H. Yoon, I. Mochida, and D.H. Jung, Direct synthesis and structural analysis of nitrogen-doped carbon nanofibers, Langmuir, 25(2009), No. 14, p. 8268. doi: 10.1021/la900472d
|
[45] |
Y.L. Wen, X.C. Chen, and E. Mijowska, Insight into the dependence of particle size of ZIF-8 on the performance in nanocarbon-based supercapacitors, Chem. Eur. J., 26(2020), No. 69, p. 16328. doi: 10.1002/chem.202001979
|
[46] |
W. Zhang, Z.Y. Wu, H.L. Jiang, and S.H. Yu, Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis, J. Am. Chem. Soc., 136(2014), No. 41, p. 14385. doi: 10.1021/ja5084128
|
[47] |
W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N,S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397. doi: 10.1016/j.electacta.2013.06.065
|
[48] |
W. Feng, Y. Zhou, H.N. Xing, et al., Hydrothermal synthesis of nitrogen-doped graphene as lightweight and high-efficient electromagnetic wave absorbers, J. Mater. Sci. Mater. Electron., 32(2021), No. 21, p. 26116. doi: 10.1007/s10854-021-06340-4
|
[49] |
Z.X. Li, X.H. Li, Y. Zong, et al., Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers, Carbon, 115(2017), p. 493. doi: 10.1016/j.carbon.2017.01.036
|
[50] |
Y. Sun, Y.J. Wang, H.J. Ma, et al., Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance, Carbon, 178(2021), p. 515. doi: 10.1016/j.carbon.2021.03.032
|
[51] |
J.L. Li, C.Y. Li, S.Q. Feng, et al., Atomically dispersed Zn-Nx sites in N-doped carbon for reductive N-formylation of nitroarenes with formic acid, ChemCatChem, 12(2020), No. 6, p. 1546. doi: 10.1002/cctc.201902109
|
[52] |
G. Li, T.S. Xie, S.L. Yang, J.H. Jin, and J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers, J. Phys. Chem. C, 116(2012), No. 16, p. 9196. doi: 10.1021/jp300050u
|
[53] |
T.Q. Hou, Z.R. Jia, S.Q. He, et al., Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption, J. Colloid Interface Sci., 583(2021), p. 321. doi: 10.1016/j.jcis.2020.09.054
|
[54] |
J. Feng, Y. Zong, Y. Sun, et al, Optimization of porous FeNi3/N–GN composites with superior microwave absorption performance, Chem. Eng. J., 345(2018), p. 441. doi: 10.1016/j.cej.2018.04.006
|
[55] |
Y.J. Wang, Y. Sun, Y. Zong, et al., Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance, J. Alloys Compd., 824(2020), art. No. 153980. doi: 10.1016/j.jallcom.2020.153980
|
[56] |
X.H. Li, J. Feng, Y.P. Du, et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber, J. Mater. Chem. A, 3(2015), No. 10, p. 5535. doi: 10.1039/C4TA05718J
|
[57] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2103436. doi: 10.1002/adfm.202103436
|
[58] |
X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030. doi: 10.1007/s42114-021-00415-w
|
[59] |
H.P. Wang, Y. Zhou, H.N. Xing, et al., Construction of flower-like core–shell Fe3O4@2H–MoS2 heterostructures: Boosting the interfacial polarization for high-performance microwave absorption, Ceram. Int., 48(2022), No. 7, p. 9918. doi: 10.1016/j.ceramint.2021.12.196
|
[60] |
D.Q. Zhang, H.H. Wang, J.Y. Cheng, et al., Conductive WS2–NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance, Appl. Surf. Sci., 528(2020), art. No. 147052. doi: 10.1016/j.apsusc.2020.147052
|
[61] |
Y. Sun, J.W. Zhang, Y. Zong, et al., Crystalline-amorphous permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents, ACS Appl. Mater. Interfaces, 11(2019), No. 6, p. 6374. doi: 10.1021/acsami.8b18875
|
[62] |
Y. Sun, B. Zhou, H.P. Wang, et al., Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core–shell FeCo@Fe3O4 nanoparticle for improved microwave absorption, Carbon, 186(2022), p. 333. doi: 10.1016/j.carbon.2021.10.053
|
[63] |
C.H. Sun, Z.R. Jia, S. Xu, et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
|
[64] |
R.W. Shu, X.H. Li, K.H. Tian, and J.J. Shi, Fabrication of bimetallic metal-organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers, Composites Part B, 228(2022), art. No. 109423. doi: 10.1016/j.compositesb.2021.109423
|