Cite this article as: |
Ning Guo, Qi Cheng, Yunlong Fu, Yang Gao, Hao Chen, Shuai Zhang, Xin Zhang, and Jinlong He, Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 670-677. https://doi.org/10.1007/s12613-022-2500-x |
Yunlong Fu E-mail: fuyunl2022@126.com
[1] |
E.B. Moustafa and A.O. Mosleh, Effect of (Ti–B) modifier elements and FSP on 5052 aluminum alloy, J. Alloys Compd., 823(2020), art. No. 153745. doi: 10.1016/j.jallcom.2020.153745
|
[2] |
C. Duraipandi, A. Khan M, J.J.T. Winowlin, N.M. Ghazaly, and P.M. Mashinini, Solid particle erosion studies of thermally deposited alumina–titania coatings on an aluminum alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1186. doi: 10.1007/s12613-020-2099-8
|
[3] |
H.M. Xia, L. Zhang, Y.C. Zhu, et al., Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
|
[4] |
R.Q. Lu, L. Zhang, S.W. Zheng, et al., Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 108. doi: 10.1007/s12613-021-2342-y
|
[5] |
D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive manufacturing of metals, Acta Mater., 117(2016), p. 371. doi: 10.1016/j.actamat.2016.07.019
|
[6] |
C. Shang, G.J. Xu, C.Y. Wang, G. Yang, and J.H. You, Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer, Mater. Lett., 252(2019), p. 342. doi: 10.1016/j.matlet.2019.06.030
|
[7] |
L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58(2010), No. 9, p. 3303. doi: 10.1016/j.actamat.2010.02.004
|
[8] |
D.I. Adebiyi and A.P.I. Popoola, Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying, Mater. Des., 74(2015), p. 67. doi: 10.1016/j.matdes.2015.02.010
|
[9] |
H. Hosseini-Tayeb and S.M. Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 327. doi: 10.1007/s12613-020-2211-0
|
[10] |
W.U.H. Syed and L. Li, Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition, Appl. Surf. Sci., 248(2005), No. 1-4, p. 518. doi: 10.1016/j.apsusc.2005.03.039
|
[11] |
M. Moradi, A. Ashoori, and A. Hasani, Additive manufacturing of stellite 6 superalloy by direct laser metal deposition ― Part 1: Effects of laser power and focal plane position, Opt. Laser Technol., 131(2020), art. No. 106328. doi: 10.1016/j.optlastec.2020.106328
|
[12] |
M. Froend, S. Riekehr, N. Kashaev, B. Klusemann, and J. Enz, Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fibre laser, J. Manuf. Process., 34(2018), p. 721. doi: 10.1016/j.jmapro.2018.06.033
|
[13] |
N. Guo, X. Xing, H.Y. Zhao, C.W. Tan, J.C. Feng, and Z.Q. Deng, Effect of water depth on weld quality and welding process in underwater fiber laser welding, Mater. Des., 115(2017), p. 112. doi: 10.1016/j.matdes.2016.11.044
|
[14] |
X.R. Feng, X.F. Cui, W. Zheng, et al., Performance of underwater laser cladded nickel aluminum bronze by applying zinc protective layer and titanium additives, J. Mater. Process. Technol., 266(2019), p. 544. doi: 10.1016/j.jmatprotec.2018.11.036
|
[15] |
X. Wen, G. Jin, X.F. Cui, et al., Underwater wet laser cladding on 316L stainless steel: A protective material assisted method, Opt. Laser Technol., 111(2019), p. 814. doi: 10.1016/j.optlastec.2018.09.022
|
[16] |
N. Guo, Y.L. Fu, X. Xing, Y.K. Liu, S.X. Zhao, and J.C. Feng, Underwater local dry cavity laser welding of 304 stainless steel, J. Mater. Process. Technol., 260(2018), p. 146. doi: 10.1016/j.jmatprotec.2018.05.025
|
[17] |
Y.L. Fu, N. Guo, G.H. Wang, M.Q. Yu, Q. Cheng, and D. Zhang, Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution, Mater. Des., 197(2021), art. No. 109196. doi: 10.1016/j.matdes.2020.109196
|
[18] |
G.Y. Chen, B. Wang, S. Mao, P.X. Zhong, and J. He, Research on the “∞”-shaped laser scanning welding process for aluminum alloy, Opt. Laser Technol., 115(2019), p. 32. doi: 10.1016/j.optlastec.2019.01.046
|
[19] |
J.X. Fang, J.H. Mo, and J.J. Li, Microstructure difference of 5052 aluminum alloys under conventional drawing and electromagnetic pulse assisted incremental drawing, Mater. Charact., 129(2017), p. 88. doi: 10.1016/j.matchar.2017.04.035
|
[20] |
H.W. Jiang, N. Li, Z. Xu, Z.S. Fan, H.P. Yu, and L. Liu, Microstructure, texture and mechanical properties of 5A02 aluminum alloy tubes under electromagnetic bulging, Mater. Des., 82(2015), p. 106. doi: 10.1016/j.matdes.2015.05.047
|
[21] |
E. Brandl, V. Michailov, B. Viehweger, and C. Leyens, Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads, Surf. Coat. Technol., 206(2011), No. 6, p. 1130. doi: 10.1016/j.surfcoat.2011.07.094
|
[22] |
Z.D. Wang, G.F. Sun, Y. Lu, et al., High-performance Ti–6Al–4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition, Surf. Coat. Technol., 408(2021), art. No. 126778. doi: 10.1016/j.surfcoat.2020.126778
|
[23] |
Z.D. Wang, G.F. Sun, M.Z. Chen, et al., Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance, Addit. Manuf., 39(2021), art. No. 101884. doi: 10.1016/j.addma.2021.101884
|
[24] |
Y. Zhou, S.Y. Chen, X.T. Chen, T. Cui, J. Liang, and C.S. Liu, The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power, Mater. Sci. Eng. A, 742(2019), p. 150. doi: 10.1016/j.msea.2018.10.092
|
[25] |
X.H. Zhan, J.C. Chen, J.J. Liu, Y.H. Wei, J.J. Zhou, and Y. Meng, Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints, Mater. Des., 99(2016), p. 449. doi: 10.1016/j.matdes.2016.03.058
|