Chen Chen, Jingwei Li, Qiuxia Zuo, Boyuan Ban,  and Jian Chen, Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 365-377. https://doi.org/10.1007/s12613-022-2504-6
Cite this article as:
Chen Chen, Jingwei Li, Qiuxia Zuo, Boyuan Ban,  and Jian Chen, Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 365-377. https://doi.org/10.1007/s12613-022-2504-6
Research Article

Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining

+ Author Affiliations
  • Corresponding authors:

    Boyuan Ban    E-mail: jchen@ipp.ac.cn

    Jian Chen    E-mail: jchen@ipp.ac.cn

  • Received: 18 February 2022Revised: 17 April 2022Accepted: 18 April 2022Available online: 19 April 2022
  • To remove the key impurity elements, P and B, from primary Si simultaneously, Sr and Zr co-addition to Al–Si alloy systems during solvent refining has been investigated. Sr reacts with Al, Si, and P in the melt to form a P-containing Al2Si2Sr phase and Zr reacts with B to form a ZrB2 phase. In the Al–Si–Sr–Zr system, high removal fractions of P and B in the primary Si, with 84.8%–98.4% and 90.7%–96.7%, respectively, are achieved at the same time, respectively. The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000 μg·kg–1, and the removal fractions of P and B in the purified Si reach 98.4% and 96.1%. Compared with the Sr/Zr single-addition, the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend, indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent. Finally, an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases, which reveals the interaction between the impurity phases and the primary Si.
  • loading
  • Supplementary Informations-IJM-02-2022-0172.docx
  • [1]
    T. Yoshikawa and K. Morita, An evolving method for solar-grade silicon production: Solvent refining, JOM, 64(2012), No. 8, p. 946. doi: 10.1007/s11837-012-0371-8
    [2]
    Y.Q. Li, W. Chen, J. Lu, X.H. Lei, and L.F. Zhang, Boron removal from metallurgical-grade silicon by slag refining and gas blowing techniques: Experiments and simulations, J. Electron. Mater., 50(2021), No. 3, p. 1386. doi: 10.1007/s11664-020-08651-4
    [3]
    Y.S. Ren, H.P. Wang, and K. Morita, Effect of Zr addition on B-removal behaviour during solidification purification of Si with Si–Sn solvent, Vacuum, 167(2019), p. 319. doi: 10.1016/j.vacuum.2019.06.029
    [4]
    S. Shi, P.T. Li, D.C. Jiang, Y. Tan, X. Li, J.X. Yang, L. Zhang, F. Wang, J.Y. Li, and H. M. Asghar, Asghar, Kinetics of evaporation under vacuum in preparation of solar-grade silicon by electron beam melting, Mater. Sci. Semicond. Process., 96(2019), p. 53. doi: 10.1016/j.mssp.2019.02.015
    [5]
    X. Gu, X.G. Yu, and D.R. Yang, Low-cost solar grade silicon purification process with Al–Si system using a powder metallurgy technique, Sep. Purif. Technol., 77(2011), No. 1, p. 33. doi: 10.1016/j.seppur.2010.11.016
    [6]
    B.Y. Ban, Y.L. Li, Q.X. Zuo, T.T. Zhang, J. Chen, and S.Y. Dai, Refining of metallurgical grade Si by solidification of Al–Si melt under electromagnetic stirring, J. Mater. Process. Technol., 222(2015), p. 142. doi: 10.1016/j.jmatprotec.2015.03.012
    [7]
    T. Yoshikawa and K. Morita, Removal of B from Si by solidification refining with Si–Al melts, Metall. Mater. Trans. B, 36(2005), No. 6, p. 731. doi: 10.1007/s11663-005-0076-2
    [8]
    W.Z. Yu, Y. Xue, J. Mei, X.Z. Zhou, M.L. Xiong, and S.F. Zhang, Segregation and removal of transition metal impurities during the directional solidification refining of silicon with Al–Si solvent, J. Alloys Compd., 805(2019), p. 198. doi: 10.1016/j.jallcom.2019.07.089
    [9]
    F.A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J., 39(1960), No. 1, p. 205. doi: 10.1002/j.1538-7305.1960.tb03928.x
    [10]
    H.X. Lai, Z.L. Sheng, J.T. Li, P.F. Xing, and X.T. Luo, Enhanced separation of phosphorus from metallurgical grade silicon by CaAl2Si2 phase reconstruction, Sep. Purif. Technol., 191(2018), p. 257. doi: 10.1016/j.seppur.2017.09.034
    [11]
    L.Q. Huang, A. Danaei, S. Thomas, P.F. Xing, J.T. Li, X.T. Luo, and M. Barati, Solvent extraction of phosphorus from Si–Cu refining system with calcium addition, Sep. Purif. Technol., 204(2018), p. 205. doi: 10.1016/j.seppur.2018.04.087
    [12]
    L. Hu, Z. Wang, X.Z. Gong, Z.C. Guo, and H. Zhang, Purification of metallurgical-grade silicon by Sn–Si refining system with calcium addition, Sep. Purif. Technol., 118(2013), p. 699. doi: 10.1016/j.seppur.2013.08.013
    [13]
    M.Y. Zhu, S.Y. Yue, G.X. Wu, K. Tang, Y.J. Xu, and J. Safarian, P removal from Si by Si–Ca–Al alloying-leaching refining: Effect of Al and the CaAl2Si2 phase, Sep. Purif. Technol., 271(2021), art. No. 118675. doi: 10.1016/j.seppur.2021.118675
    [14]
    L.Y. Sun, Z. Wang, H. Chen, D. Wang, and G.Y. Qian, Removal of phosphorus in silicon by the formation of CaAl2Si2 phase at the solidification interface, Metall. Mater. Trans. B, 48(2017), No. 1, p. 420. doi: 10.1007/s11663-016-0848-x
    [15]
    S.M. Kauzlarich, C.L. Condron, J.K. Wassei, T. Ikeda, and G.J. Snyder, Structure and high-temperature thermoelectric properties of SrAl2Si2, J. Solid State Chem., 182(2009), No. 2, p. 240. doi: 10.1016/j.jssc.2008.09.028
    [16]
    J. Rakhmonov, G. Timelli, and G. Basso, Interaction of Ca, P trace elements and Sr modification in AlSi5Cu1Mg alloys, J. Therm. Anal. Calorim., 133(2018), No. 1, p. 123. doi: 10.1007/s10973-018-7111-4
    [17]
    Y.H. Cho, H.C. Lee, K.H. Oh, and A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys, Metall. Mater. Trans. A, 39(2008), No. 10, p. 2435. doi: 10.1007/s11661-008-9580-8
    [18]
    Y. Lei, W.H. Ma, L.E. Sun, Y.N. Dai, and K. Morita, B removal by Zr addition in electromagnetic solidification refinement of Si with Si–Al melt, Metall. Mater. Trans. B, 47(2016), No. 1, p. 27. doi: 10.1007/s11663-015-0506-8
    [19]
    T. Yoshikawa, K. Arimura, and K. Morita, Boron removal by titanium addition in solidification refining of silicon with Si–Al melt, Metall. Mater. Trans. B, 36(2005), No. 6, p. 837. doi: 10.1007/s11663-005-0085-1
    [20]
    Y.S. Ren and K. Morita, Low-temperature process for the fabrication of low-boron content bulk Si from Si–Cu solution with Zr addition, ACS Sustain. Chem. Eng., 8(2020), No. 17, p. 6853. doi: 10.1021/acssuschemeng.0c01785
    [21]
    Y. Lei, W.H. Ma, J.J. Wu, K.X. Wei, G.Q. Lv, and S.T. Li, Purification of metallurgical-grade silicon using Si–Sn alloy in presence of Hf, Zr, or Ti, Mater. Sci. Semicond. Process., 88(2018), p. 97. doi: 10.1016/j.mssp.2018.07.039
    [22]
    H. Sakiani, S.H. Tabaian, and J. Chen, Effect of calcium addition on the silicon purification in the presence of low concentration of iron, J. Alloys Compd., 830(2020), art. No. 154112. doi: 10.1016/j.jallcom.2020.154112
    [23]
    H. Sakiani, S.H. Tabaian, J. Chen, J.W. Li, and B.Y. Ban, Investigating boron and phosphorus removal from silicon by Si–Ti and Si–Ti–Fe alloying systems, Sep. Purif. Technol., 250(2020), art. No. 117227. doi: 10.1016/j.seppur.2020.117227
    [24]
    X.L. Bai, B.Y. Ban, J.W. Li, Z.Q. Fu, Z.J. Peng, C.B. Wang, and J. Chen, Effect of Ti addition on B removal during silicon refining in Al–30%Si alloy directional solidification, Sep. Purif. Technol., 174(2017), p. 345. doi: 10.1016/j.seppur.2016.11.002
    [25]
    X.L. Bai, B.Y. Ban, J.W. Li, Z.J. Peng, and J. Chen, Distribution behavior of B and P during Al–Si melt directional solidification with open-ended crucible, High Temp. Mater. Process., 37(2018), No. 3, p. 201. doi: 10.1515/htmp-2016-0127
    [26]
    Y.L. Li, B.Y. Ban, J.W. Li, T.T. Zhang, X.L. Bai, J. Chen, and S.Y. Dai, Effect of cooling rate on phosphorus removal during Al–Si solvent refining, Metall. Mater. Trans. B, 46(2015), No. 2, p. 542. doi: 10.1007/s11663-015-0291-4
    [27]
    F. Chigondo, From metallurgical-grade to solar-grade silicon: An overview, Silicon, 10(2018), No. 3, p. 789. doi: 10.1007/s12633-016-9532-7
    [28]
    C. Chen, J.W. Li, X.S. Jiang, W.F. Song, J. Shi, B.Y. Ban, and J. Chen, Effect of impurity phase migration on Al–30wt.%Si solvent refining with Zr additions during directional solidification, Sep. Purif. Technol., 278(2021), art. No. 119572. doi: 10.1016/j.seppur.2021.119572
    [29]
    V.N. Lozovskii and V.P. Popov, Temperature gradient zone melting, Prog. Cryst. Growth Charact., 6(1983), No. 1, p. 1. doi: 10.1016/0146-3535(83)90022-9
    [30]
    C. Chen, B.Y. Ban, J.F. Sun, J.W. Li, X.S. Jiang, J. Shi, and J. Chen, Mechanism of boron removal of primary Si phases and morphology evolution of impurity phases during slow cooling solidification refining of Al–30wt.%Si alloy with Zr additions, J. Alloys Compd., 860(2021), art. No. 158517. doi: 10.1016/j.jallcom.2020.158517
    [31]
    K. Kobayashi, P.H. Shingu, and R. Ozaki, Crystal growth of the primary silicon in an Al–16wt%Si alloy, J. Mater. Sci., 10(1975), No. 2, p. 290. doi: 10.1007/BF00540353
    [32]
    W.Z. Yu, W.H. Ma, G.Q. Lü, Y.S. Ren, H.Y. Xue, and Y.N. Dai, Si purification by enrichment of primary Si in Al–Si melt, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3476. doi: 10.1016/S1003-6326(13)62891-5
    [33]
    D. Liang, Y. Bayraktar, and H. Jones, Formation and segregation of primary silicon in Bridgman solidified Al–18.3wt% Si alloy, Acta Metall. Mater., 43(1995), No. 2, p. 579. doi: 10.1016/0956-7151(94)00287-R
    [34]
    F.W. Glaser and B. Post, System zirconium–boron, JOM, 5(1953), No. 9, p. 1117. doi: 10.1007/BF03397597
    [35]
    P.J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis, Third edition Ed., Taylor & Francis, London and New York, 2001, p. 254.
    [36]
    W. Yi, J.B. Gao, Y. Tang, and L.J. Zhang, Thermodynamic descriptions of ternary Al–Si–Sr system supported by key experiments, Calphad, 68(2020), art. No. 101732. doi: 10.1016/j.calphad.2019.101732
    [37]
    T. Yoshikawa and K. Morita, Refining of silicon during its solidification from a Si–Al melt, J. Cryst. Growth, 311(2009), No. 3, p. 776. doi: 10.1016/j.jcrysgro.2008.09.095
    [38]
    H.M. Chen, F. Zheng, H.S. Liu, L.B. Liu, and Z.P. Jin, Thermodynamic assessment of B–Zr and Si–Zr binary systems, J. Alloys Compd., 468(2009), No. 1-2, p. 209. doi: 10.1016/j.jallcom.2008.01.061
    [39]
    H. Li, L.T. Zhang, Q.F. Zeng, J.J. Wang, L.F. Cheng, H.T. Ren, and G. Kang, Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study, Comput. Mater. Sci., 49(2010), No. 4, p. 814. doi: 10.1016/j.commatsci.2010.06.027
    [40]
    G.M. Zatorska, G.S. Dmytriv, V.V. Pavlyuk, E. Bartoszak-Adamska, and M. Jaskólski, Crystal structure of the new intermetallic compound Zr2−xLix+ySi1−y (x = 0.17, y = 0.12) and its relation with the disilicide ZrSi2, J. Alloys Compd., 346(2002), No. 1-2, p. 154. doi: 10.1016/S0925-8388(02)00493-0
    [41]
    W.Z. Yu, W.H. Ma, Z. Zheng, W.Y. Jiang, J. Li, and M.H. Tian, Effects of melt viscosity on enrichment and separation of primary silicon from Al–Si melt, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 467. doi: 10.1016/S1003-6326(17)60053-0
    [42]
    J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, and T.J. Li, Separation mechanism of the primary Si phase from the hypereutectic Al–Si alloy using a rotating magnetic field during solidification, Acta Mater., 72(2014), p. 57. doi: 10.1016/j.actamat.2014.03.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(598) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return