Runpeng Liao, Shuming Wen, Qicheng Feng, Jiushuai Deng, and Hao Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-022-2505-5
Cite this article as:
Runpeng Liao, Shuming Wen, Qicheng Feng, Jiushuai Deng, and Hao Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-022-2505-5
Research Article

Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite

+ Author Affiliations
  • Corresponding authors:

    Qicheng Feng    E-mail: fqckmust@163.com

    Jiushuai Deng    E-mail: dengshuai689@163.com

  • Received: 15 March 2022Revised: 18 April 2022Accepted: 19 April 2022Available online: 22 April 2022
  • The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work. Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca2+ system, whereas arsenopyrite was almost unaffected. In mineral mixtures tests, the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%. After ammonium oxalate and ethyl xanthate treatment, the hydrophobicity of pyrite increased significantly, and the contact angle increased from 66.62° to 75.15° and then to 81.21°. After ammonium oxalate treatment, the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface. Zeta potential measurements showed that after activation by ammonium oxalate, there was a shift in the zeta potential of pyrite to more negative values by adding xanthate. X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment, the O 1s content on the surface of pyrite decreased from 44.03% to 26.18%, and the S 2p content increased from 14.01% to 27.26%, which confirmed that the ammonium oxalate-treated pyrite surface was more hydrophobic than the untreated surface. Therefore, ammonium oxalate may be used as a selective activator of pyrite in the lime system, which achieves an efficient flotation separation of S–As sulfide ores under high alkalinity and high Ca2+ concentration conditions.
  • loading
  • [1]
    B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532. doi: 10.1016/j.mineng.2020.106532
    [2]
    X.F. Zheng, S.T. Cao, Z.Y. Nie, et al., Impact of mechanical activation on bioleaching of pyrite: A DFT study, Miner. Eng., 148(2020), art. No. 106209. doi: 10.1016/j.mineng.2020.106209
    [3]
    P.M. Ferreira, D. Majuste, E.T.F. Freitas, et al., Galvanic effect of pyrite on arsenic release from arsenopyrite dissolution in oxygen-depleted and oxygen-saturated circumneutral solutions, J. Hazard. Mater., 412(2021), art. No. 125236. doi: 10.1016/j.jhazmat.2021.125236
    [4]
    M. Zanin, H. Lambert, and C.A. du Plessis, Lime use and functionality in sulphide mineral flotation: A review, Miner. Eng., 143(2019), art. No. 105922. doi: 10.1016/j.mineng.2019.105922
    [5]
    X.H. Wang and K.S. Eric Forssberg, Mechanisms of pyrite flotation with xanthates, Int. J. Miner. Process., 33(1991), No. 1-4, p. 275. doi: 10.1016/0301-7516(91)90058-Q
    [6]
    A.S. Stepanov, R.R. Large, E.S. Kiseeva, et al., Phase relations of arsenian pyrite and arsenopyrite, Ore Geol. Rev., 136(2021), art. No. 104285. doi: 10.1016/j.oregeorev.2021.104285
    [7]
    A.M. Buswell, D.J. Bradshaw, P.J. Harris, and Z. Ekmekci, The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore, Miner. Eng., 15(2002), No. 6, p. 395. doi: 10.1016/S0892-6875(02)00061-4
    [8]
    Y.H. Hu, S.L. Zhang, and G.Z. Qiu, Surface chemistry of activation of lime-depressed pyrite in flotation, Trans. Nonferrous Met. Soc. China, 10(2000), No. 6, p. 798.
    [9]
    S. Dzhamyarov, I. Grigorova, M. Ranchev, and I. Nishkov, Ammomiacal activation of lime depressed pyritea, [in] Proc. of XXIX International Mineral Processing Congress, Moscow, 2018.
    [10]
    R. Murphy and D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 64(2009), No. 1, p. 1. doi: 10.1016/j.surfrep.2008.09.002
    [11]
    O. Kenji, T. Tsunehiko, and S. Kozo, Effect on some ammonium salts on the flotation of iron sulphide minerals, Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy, 12(1960), p. 62.
    [12]
    X. Xiaojun and Ş. Kelebek, Activation of xanthate flotation of pyrite by ammonium salts following it’s depression by lime, Dev. Miner. Process., 13(2000), p. C8b.
    [13]
    Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
    [14]
    X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
    [15]
    C. Han, D.Z. Wei, S.L. Gao, et al., Adsorption and desorption of butyl xanthate on chalcopyrite, J. Mater. Res. Technol., 9(2020), No. 6, p. 12654. doi: 10.1016/j.jmrt.2020.09.021
    [16]
    S.A. Khoso, Y.H. Hu, F. Lü, et al., Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604. doi: 10.1016/S1003-6326(19)65167-8
    [17]
    Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
    [18]
    W.J. Zhao, M.L. Wang, B. Yang, Q.C. Feng, and D.W. Liu, Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species, Miner. Eng., 187(2022), art. No. 107796. doi: 10.1016/j.mineng.2022.107796
    [19]
    S.R. Rao and J.A. Finch, A review of water re-use in flotation, Miner. Eng., 2(1989), No. 1, p. 65. doi: 10.1016/0892-6875(89)90066-6
    [20]
    R.S. Multani, H. Williams, B. Johnson, R.H. Li, and K.E. Waters, The effect of superstructure on the zeta potential, xanthate adsorption, and flotation response of pyrrhotite, Colloids Surf. A Physicochem. Eng. Aspects, 551(2018), p. 108. doi: 10.1016/j.colsurfa.2018.04.057
    [21]
    P. Galicia, N. Batina, and I. González, The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: An XPS and EIS study, J. Phys. Chem. B, 110(2006), No. 29, p. 14398. doi: 10.1021/jp061921k
    [22]
    A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre, Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™, Surf. Sci., 572(2004), No. 2-3, p. 217. doi: 10.1016/j.susc.2004.08.035
    [23]
    C.F. Jones, S. LeCount, R.S.C. Smart, and T.J. White, Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies, Appl. Surf. Sci., 55(1992), No. 1, p. 65. doi: 10.1016/0169-4332(92)90382-8
    [24]
    N.S. McIntyre and D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides, Anal. Chem., 49(1977), No. 11, p. 1521. doi: 10.1021/ac50019a016
    [25]
    H. Chen, Z.L. Zhang, Z.L. Yang, et al., Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS, Chem. Eng. J., 273(2015), p. 481. doi: 10.1016/j.cej.2015.03.079
    [26]
    M. Kartal, F. Xia, D. Ralph, et al., Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192. doi: 10.1016/j.hydromet.2019.105192
    [27]
    B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
    [28]
    P. Li, J.Y. Lin, K.L. Tan, and J.Y. Lee, Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine, Electrochim. Acta, 42(1997), No. 4, p. 605. doi: 10.1016/S0013-4686(96)00205-8
    [29]
    R.S.C. Smart, W.M. Skinner, and A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur, Surf. Interface Anal., 28(1999), No. 1, p. 101. doi: 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0
    [30]
    R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate(VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369. doi: 10.1016/j.mineng.2020.106369
    [31]
    M. Mullet, S. Boursiquot, M. Abdelmoula, J.M. Génin, and J.J. Ehrhardt, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochim. Cosmochim. Acta, 66(2002), No. 5, p. 829. doi: 10.1016/S0016-7037(01)00805-5
    [32]
    H.W. Nesbitt, G.M. Bancroft, A.R. Pratt, and M.J. Scaini, Sulfur and iron surface states on fractured pyrite surfaces, Am. Mineral., 83(1998), No. 9-10, p. 1067. doi: 10.2138/am-1998-9-1015
    [33]
    P. Forson, M. Zanin, W. Skinner, and R. Asamoah, Differential flotation of pyrite and arsenopyrite: Effect of hydrogen peroxide and collector type, Miner. Eng., 163(2021), art. No. 106808. doi: 10.1016/j.mineng.2021.106808
    [34]
    H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
    [35]
    Y.L. Mikhlin, A.S. Romanchenko, and I.P. Asanov, Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study, Geochim. Cosmochim. Acta, 70(2006), No. 19, p. 4874. doi: 10.1016/j.gca.2006.07.021
    [36]
    C.L. Corkhill, P.L. Wincott, J.R. Lloyd, and D.J. Vaughan, The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by leptospirillum ferrooxidans, Geochim. Cosmochim. Acta, 72(2008), No. 23, p. 5616. doi: 10.1016/j.gca.2008.09.008
    [37]
    H.W. Nesbitt, I.J. Muir, and A.R. Prarr, Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation, Geochim. Cosmochim. Acta, 59(1995), No. 9, p. 1773. doi: 10.1016/0016-7037(95)00081-A
    [38]
    H.W. Nesbitt and I.J. Muir, Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air, Mineral. Petrol., 62(1998), No. 1-2, p. 123. doi: 10.1007/BF01173766
    [39]
    M.C. Costa, A.M. Botelho do Rego, and L.M. Abrantes, Characterization of a natural and an electro-oxidized arsenopyrite: A study on electrochemical and X-ray photoelectron spectroscopy, Int. J. Miner. Process., 65(2002), No. 2, p. 83. doi: 10.1016/S0301-7516(01)00059-X
    [40]
    F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian, and A. Madhukar, Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS, J. Vac. Sci. Technol., 16(1979), No. 5, p. 1443. doi: 10.1116/1.570218
    [41]
    Y. Du, Q. Lu, H.Y. Chen, Y.G. Du, and D.Y. Du, A novel strategy for arsenic removal from dirty acid wastewater via CaCO3–Ca(OH)2–Fe(III) processing, J. Water Process. Eng., 12(2016), p. 41. doi: 10.1016/j.jwpe.2016.06.003
    [42]
    Y.F. Jia, L.Y. Xu, X. Wang, and G.P. Demopoulos, Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta, 71(2007), No. 7, p. 1643. doi: 10.1016/j.gca.2006.12.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(1527) PDF Downloads(101) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return