Cite this article as: |
Zhiwei Wang, Min Zhang, Cong Li, Fenglei Niu, Hao Zhang, Peng Xue, Dingrui Ni, Bolv Xiao, and Zongyi Ma, Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 166-176. https://doi.org/10.1007/s12613-022-2508-2 |
Peng Xue E-mail: pxue@imr.ac.cn
Dingrui Ni E-mail: drni@imr.ac.cn
[1] |
R. Viswanathan, J.F. Henry, J. Tanzosh, et al, U.S. program on materials technology for ultra-supercritical coal power plants, J. Mater. Eng. Perform., 14(2005), No. 3, p. 281. doi: 10.1361/10599490524039
|
[2] |
S.J. Zinkle and G.S. Was, Materials challenges in nuclear energy, Acta Mater., 61(2013), No. 3, p. 735. doi: 10.1016/j.actamat.2012.11.004
|
[3] |
S.J. Zinkle and J.T. Busby, Structural materials for fission & fusion energy, Mater. Today, 12(2009), No. 11, p. 12. doi: 10.1016/S1369-7021(09)70294-9
|
[4] |
Y. Gong, Z.G. Yang, and F.Y. Yang, Heat strength evaluation and microstructures observation of the welded joints of one China-made T91 steel, J. Mater. Eng. Perform., 21(2012), No. 7, p. 1313. doi: 10.1007/s11665-011-0048-4
|
[5] |
M. Ida, T. Chida, K. Furuya, E. Wakai, H. Nakamura, and M. Sugimoto, Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel, J. Nucl. Mater., 386-388(2009), p. 987. doi: 10.1016/j.jnucmat.2008.12.272
|
[6] |
J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
|
[7] |
C. Li, X.D. Fang, Q.S. Wang, et al, A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern, Corros. Sci., 180(2021), art. No. 109214. doi: 10.1016/j.corsci.2020.109214
|
[8] |
C. Li, Y.J. Liu, F.F. Zhang, X.D. Fang, and Z. Liu, Erosion-corrosion of 304N austenitic steels in liquid PbBi flow perpendicular to steel surface, Mater. Charact., 175(2021), art. No. 111054. doi: 10.1016/j.matchar.2021.111054
|
[9] |
J.Y. Zhang, B. Huang, Q.S. Wu, C.J. Li, and Q.Y. Huang, Effect of post-weld heat treatment on the mechanical properties of CLAM/316L dissimilar joint, Fusion Eng. Des., 100(2015), p. 334. doi: 10.1016/j.fusengdes.2015.06.194
|
[10] |
R.S. Vidyarthy, A. Kulkarni, and D.K. Dwivedi, Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint, Mater. Sci. Eng. A, 695(2017), p. 249. doi: 10.1016/j.msea.2017.04.038
|
[11] |
S.K. Albert, C.R. Das, S. Sam, et al, Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process, Fusion Eng. Des., 89(2014), No. 7-8, p. 1605. doi: 10.1016/j.fusengdes.2014.04.063
|
[12] |
I. Serre and J.B. Vogt, Mechanical properties of a 316L/T91 weld joint tested in lead-bismuth liquid, Mater. Des., 30(2009), No. 9, p. 3776. doi: 10.1016/j.matdes.2009.01.038
|
[13] |
J. van den Bosch and A. Almazouzi, Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment, J. Nucl. Mater., 385(2009), No. 3, p. 504. doi: 10.1016/j.jnucmat.2008.12.043
|
[14] |
H.Y. Fu, T. Nagasaka, M. Yamazaki, et al, Deformation of dissimilar-metals joint between F82H and 316L in impact tests after neutron irradiation, Fusion Eng. Des., 124(2017), p. 1063. doi: 10.1016/j.fusengdes.2017.03.157
|
[15] |
H. Serizawa, D. Mori, Y. Shirai, H. Ogiwara, and H. Mori, Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding, Fusion Eng. Des., 88(2013), No. 9-10, p. 2466. doi: 10.1016/j.fusengdes.2013.03.041
|
[16] |
H. Serizawa, D. Mori, H. Ogiwara, and H. Mori, Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser, Fusion Eng. Des., 89(2014), No. 7-8, p. 1764. doi: 10.1016/j.fusengdes.2013.12.003
|
[17] |
Y. Li, Y.P. Zeng, and Z.C. Wang, Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1497. doi: 10.1007/s12613-021-2295-1
|
[18] |
D. Sunilkumar, S. Muthukumaran, M. Vasudevan, and M.G. Reddy, Effect of friction stir and activated-GTA welding processes on the 9Cr–1Mo steel to 316LN stainless steel dissimilar weld joints, Sci. Technol. Weld. Join., 25(2020), No. 4, p. 311. doi: 10.1080/13621718.2019.1695347
|
[19] |
R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
|
[20] |
Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 269. doi: 10.1080/10408436.2017.1358145
|
[21] |
Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, and Z.Y. Ma, Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior, Mater. Sci. Eng. A, 707(2017), p. 426. doi: 10.1016/j.msea.2017.09.084
|
[22] |
S.C. Han, L.H. Wu, C.Y. Jiang, et al, Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment, J. Mater. Sci. Technol., 50(2020), p. 103. doi: 10.1016/j.jmst.2020.02.035
|
[23] |
F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34(2018), No. 1, p. 39. doi: 10.1016/j.jmst.2017.10.024
|
[24] |
D.G. Mohan and C.S. Wu, A review on friction stir welding of steels, Chin. J. Mech. Eng., 34(2021), art. No. 137. doi: 10.1186/s10033-021-00655-3
|
[25] |
B. He, L. Cui, D.P. Wang, Y.C. Liu, C.X. Liu, and H.J. Li, The metallurgical bonding and high temperature tensile behaviors of 9Cr–1W steel and 316L steel dissimilar joint by friction stir welding, J. Manuf. Process., 44(2019), p. 241. doi: 10.1016/j.jmapro.2019.05.033
|
[26] |
B. He, L. Cui, D.P. Wang, H.J. Li, and C.X. Liu, Microstructure and mechanical properties of RAFM–316L dissimilar joints by friction stir welding with different butt joining modes, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 135. doi: 10.1007/s40195-019-00951-x
|
[27] |
W.S. Tang, X.Q. Yang, S.L. Li, and H.J. Li, Microstructure and properties of CLAM/316L steel friction stir welded joints, J. Mater. Process. Technol., 271(2019), p. 189. doi: 10.1016/j.jmatprotec.2019.03.032
|
[28] |
C. Zhang, L. Cui, D.P. Wang, Y.C. Liu, C.X. Liu, and H.J. Li, The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5W heat resistant steel, Scripta. Mater., 158(2019), p. 6. doi: 10.1016/j.scriptamat.2018.08.028
|
[29] |
M. Türkan and Ö. Karakaş, Numerical modeling of defect formation in friction stir welding, Mater. Today Commun., 31(2022), art. No. 103539. doi: 10.1016/j.mtcomm.2022.103539
|
[30] |
F.J. Martín-Muñoz, L. Soler-Crespo, and D. Gómez-Briceño, Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic, J. Nucl. Mater., 416(2011), No. 1-2, p. 80. doi: 10.1016/j.jnucmat.2010.12.230
|
[31] |
Z.W. Wang, M. Liu, H. Zhang, et al, Welding behavior of an ultrahigh-strength quenching and partitioning steel by fusion and solid-state welding methods, J. Mater. Res. Technol., 17(2022), p. 1289. doi: 10.1016/j.jmrt.2022.01.086
|
[32] |
Z.W. Wang, G.N. Ma, B.H. Yu, et al, Improving mechanical properties of friction-stir-spot-welded advanced ultra-high-strength steel with additional water cooling, Sci. Technol. Weld. Joining, 25(2020), No. 4, p. 336. doi: 10.1080/13621718.2019.1706259
|
[33] |
S. Sackl, H. Clemens, and S. Primig, Investigation of the self tempering effect of martensite by means of atom probe tomography, Pract. Metallogr., 52(2015), No. 7, p. 374. doi: 10.3139/147.110343
|
[34] |
Z.W. Wang, G.M. Xie, D. Wang, et al, Microstructural evolution and mechanical behavior of friction-stir-welded DP1180 advanced ultrahigh strength steel, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 58. doi: 10.1007/s40195-019-00949-5
|
[35] |
M. Shamanian, A. Mirzaei, J. Kangazian, and J.A. Szpunar, Characterization and mechanical behavior of AISI 316L/Incoloy 825 dissimilar welds processed by friction stir welding, J. Manuf. Process., 55(2020), p. 66. doi: 10.1016/j.jmapro.2020.03.045
|
[36] |
Y.C. Chen, H. Fujii, T. Tsumura, et al, Friction stir processing of 316L stainless steel plate, Sci. Technol. Weld. Joining, 14(2009), No. 3, p. 197. doi: 10.1179/136217108X386527
|
[37] |
S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding, Scripta. Mater., 49(2003), No. 12, p. 1175. doi: 10.1016/j.scriptamat.2003.08.022
|
[38] |
S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel, Scripta Mater., 51(2004), No. 2, p. 101. doi: 10.1016/j.scriptamat.2004.04.001
|
[39] |
Z.W. Wang, J.F. Zhang, G.M. Xie, et al, Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel, J. Mater. Sci. Technol., 102(2022), p. 213. doi: 10.1016/j.jmst.2021.06.031
|
[40] |
P.C. Zhu, L. Zhang, Z.C. Li, et al, Microstructure and mechanical properties of friction stir welded 1.5 GPa martensitic high-strength steel plates, Acta Metall. Sin. Engl. Lett., 35(2022), No. 7, p. 1079. doi: 10.1007/s40195-021-01358-3
|