Nuo Xu, Zirui Yuan, Zhihong Ma, Xinli Guo, Yunfeng Zhu, Yongjin Zou, and Yao Zhang, Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 54-62. https://doi.org/10.1007/s12613-022-2510-8
Cite this article as:
Nuo Xu, Zirui Yuan, Zhihong Ma, Xinli Guo, Yunfeng Zhu, Yongjin Zou, and Yao Zhang, Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 54-62. https://doi.org/10.1007/s12613-022-2510-8
Research Article

Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2

+ Author Affiliations
  • Corresponding author:

    Yao Zhang    E-mail: zhangyao@seu.edu.cn

  • Received: 4 January 2022Revised: 25 April 2022Accepted: 28 April 2022Available online: 29 April 2022
  • MgH2 with a large hydrogen capacity is regarded as a promising hydrogen storage material. However, it still suffers from high thermal stability and sluggish kinetics. In this paper, highly dispersed nano-Ni has been successfully prepared by using the polyol reduction method with an average size of 2.14 nm, which significantly improves the de/rehydrogenation properties of MgH2. The MgH2–10wt% nano-Ni sample starts releasing H2 at 497 K, and roughly 6.2wt% H2 has been liberated at 583 K. The rehydrogenation kinetics of the sample are also greatly improved, and the adsorption capacity reaches 5.3wt% H2 in 1000 s at 482 K and under 3 MPa hydrogen pressure. Moreover, the activation energies of de/rehydrogenation of the MgH2–10wt% nano-Ni sample are reduced to (88 ± 2) and (87 ± 1) kJ·mol−1, respectively. In addition, the thermal stability of the MgH2–10wt% nano-Ni system is reduced by 5.5 kJ per mol H2 from that of pristine MgH2. This finding indicates that nano-Ni significantly improves both the thermodynamic and kinetic performances of the de/rehydrogenation of MgH2, serving as a bi-functional additive of both reagent and catalyst.
  • loading
  • [1]
    X.L. Yang, J.Q. Zhang, Q.H. Hou, X.T. Guo, and G.Z. Xu, Improvement of Mg-based hydrogen storage materials by metal catalysts: Review and summary, ChemistrySelect, 6(2021), No. 33, p. 8809. doi: 10.1002/slct.202102475
    [2]
    T. He, H.J. Cao, and P. Chen, Complex hydrides for energy storage, conversion, and utilization, Adv. Mater., 31(2019), No. 50, art. No. 1902757. doi: 10.1002/adma.201902757
    [3]
    Y.R. Wang, X.W. Chen, H.Y. Zhang, G.L. Xia, D.L. Sun, and X.B. Yu, Heterostructures built in metal hydrides for advanced hydrogen storage reversibility, Adv. Mater., 32(2020), No. 31, art. No. 2002647. doi: 10.1002/adma.202002647
    [4]
    X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
    [5]
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [6]
    X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, and M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci., 88(2017), p. 1. doi: 10.1016/j.pmatsci.2017.03.001
    [7]
    M.D. Allendorf, Z. Hulvey, T. Gennett, et al., An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage, Energy Environ. Sci., 11(2018), No. 10, p. 2784. doi: 10.1039/C8EE01085D
    [8]
    B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy, 32(2007), No. 9, p. 1121. doi: 10.1016/j.ijhydene.2006.11.022
    [9]
    I. Sreedhar, K.M. Kamani, B.M. Kamani, B.M. Reddy, and A. Venugopal, A Bird's Eye view on process and engineering aspects of hydrogen storage, Renewable Sustainable Energy Rev., 91(2018), p. 838. doi: 10.1016/j.rser.2018.04.028
    [10]
    J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
    [11]
    M. Hirscher, V.A. Yartys, M. Baricco, et al., Materials for hydrogen-based energy storage –Past, recent progress and future outlook, J. Alloys Compd., 827(2020), art. No. 153548. doi: 10.1016/j.jallcom.2019.153548
    [12]
    L.Z. Ouyang, X.S. Yang, M. Zhu, et al., Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73–MgH2–Ni nanocomposites, J. Phys. Chem. C, 118(2014), No. 15, p. 7808. doi: 10.1021/jp500439n
    [13]
    J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
    [14]
    I.P. Jain, C. Lal, and A. Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy, 35(2010), No. 10, p. 5133. doi: 10.1016/j.ijhydene.2009.08.088
    [15]
    J.F. Zhang, Z.N. Li, Y.F. Wu, et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials, RSC Adv., 9(2019), No. 1, p. 408. doi: 10.1039/C8RA05596C
    [16]
    F. Dawood, M. Anda, and G.M. Shafiullah, Hydrogen production for energy: An overview, Int. J. Hydrogen Energy, 45(2020), No. 7, p. 3847. doi: 10.1016/j.ijhydene.2019.12.059
    [17]
    Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
    [18]
    X.B. Xie, C.X. Hou, C.G. Chen, et al., First-principles studies in Mg-based hydrogen storage materials: A review, Energy, 211(2020), art. No. 118959. doi: 10.1016/j.energy.2020.118959
    [19]
    C.S. Zhou, Z.Z. Fang, and P. Sun, An experimental survey of additives for improving dehydrogenation properties of magnesium hydride, J. Power Sources, 278(2015), p. 38. doi: 10.1016/j.jpowsour.2014.12.039
    [20]
    Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, and K.R. Khalilpour, Hydrogen as an energy vector, Renewable Sustainable Energy Rev., 120(2020), art. No. 109620. doi: 10.1016/j.rser.2019.109620
    [21]
    L.Z. Ouyang, K. Chen, J. Jiang, X.S. Yang, and M. Zhu, Hydrogen storage in light-metal based systems: A review, J. Alloys Compd., 829(2020), art. No. 154597. doi: 10.1016/j.jallcom.2020.154597
    [22]
    F. Li, X. Jiang, J.J. Zhao, and S.B. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 16(2015), p. 488. doi: 10.1016/j.nanoen.2015.07.014
    [23]
    P. Rizo-Acosta, F. Cuevas, and M. Latroche, Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium, J. Mater. Chem. A, 7(2019), No. 40, p. 23064. doi: 10.1039/C9TA05440E
    [24]
    L.Z. Ouyang, F. Liu, H. Wang, et al., Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865. doi: 10.1016/j.jallcom.2020.154865
    [25]
    E. Boateng and A.C. Chen, Recent advances in nanomaterial-based solid-state hydrogen storage, Mater. Today Adv., 6(2020), art. No. 100022. doi: 10.1016/j.mtadv.2019.100022
    [26]
    X. Zhang, Y.F. Liu, Z.H. Ren, et al., Realizing 6.7 wt.% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides, Energy Environ. Sci., 14(2021), No. 4, p. 2302. doi: 10.1039/D0EE03160G
    [27]
    J.C. Crivello, B. Dam, R.V. Denys, et al., Review of magnesium hydride-based materials: Development and optimisation, Appl. Phys. A, 122(2016), No. 2, art. No. 97. doi: 10.1007/s00339-016-9602-0
    [28]
    H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, and M. Zhu, Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – A review of recent progress, J. Alloys Compd., 658(2016), p. 280. doi: 10.1016/j.jallcom.2015.10.090
    [29]
    H.Y. Shao, L.Q. He, H.J. Lin, and H.W. Li, Progress and trends in magnesium-based materials for energy-storage research: A review, Energy Technol., 6(2018), No. 3, p. 445. doi: 10.1002/ente.201700401
    [30]
    Y. Wang and Y.J. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 41. doi: 10.1016/j.pnsc.2016.12.016
    [31]
    M.E. Khatabi, M. Bhihi, S. Naji, et al., Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 41(2016), No. 8, p. 4712. doi: 10.1016/j.ijhydene.2016.01.001
    [32]
    S. Chakrabarti and K. Biswas, Effect on de-hydrogenation efficiency on doping of rare earth elements (Pr, Nd, Gd, Dy) in MgH2 – A density functional theory study, Int. J. Hydrogen Energy, 42(2017), No. 2, p. 1012. doi: 10.1016/j.ijhydene.2016.08.152
    [33]
    X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064. doi: 10.1016/j.mtnano.2019.100064
    [34]
    V.A. Yartys, M.V. Lototskyy, E. Akiba, et al., Magnesium based materials for hydrogen based energy storage: Past, present and future, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7809. doi: 10.1016/j.ijhydene.2018.12.212
    [35]
    Z. Sun, X. Lu, F.M. Nyahuma, et al., Enhancing hydrogen storage properties of MgH2 by transition metals and carbon materials: A brief review, Front. Chem., 8(2020), art. No. 552. doi: 10.3389/fchem.2020.00552
    [36]
    N. Hanada, T. Ichikawa, and H. Fujii, Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling, J. Phys. Chem. B, 109(2005), No. 15, p. 7188. doi: 10.1021/jp044576c
    [37]
    M. Lakhal, M. Bhihi, A. Benyoussef, A.E. Kenz, M. Loulidi, and S. Naji, The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations, Int. J. Hydrogen Energy, 40(2015), No. 18, p. 6137. doi: 10.1016/j.ijhydene.2015.02.137
    [38]
    H. Yu, S. Bennici, and A. Auroux, Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles, Int. J. Hydrogen Energy, 39(2014), No. 22, p. 11633. doi: 10.1016/j.ijhydene.2014.05.069
    [39]
    L.S. Xie, J.S. Li, T.B. Zhang, and H.C. Kou, Understanding the dehydrogenation process of MgH2 from the recombination of hydrogen atoms, Int. J. Hydrogen Energy, 41(2016), No. 13, p. 5716. doi: 10.1016/j.ijhydene.2016.02.059
    [40]
    M. Chen, X.Z. Xiao, M. Zhang, et al., Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride, Int. J. Hydrogen Energy, 44(2019), No. 3, p. 1750. doi: 10.1016/j.ijhydene.2018.11.118
    [41]
    H.X. Shao, Y.K. Huang, H.N. Guo, Y.F. Liu, Y.S. Guo, and Y.J. Wang, Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage, Int. J. Hydrogen Energy, 46(2021), No. 76, p. 37977. doi: 10.1016/j.ijhydene.2021.09.045
    [42]
    Y.K. Huang, C.H. An, Q.Y. Zhang, et al., Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage, Nano Energy, 80(2021), art. No. 105535. doi: 10.1016/j.nanoen.2020.105535
    [43]
    Q.Y. Zhang, L. Zang, Y.K. Huang, et al., Improved hydrogen storage properties of MgH2 with Ni-based compounds, Int. J. Hydrogen Energy, 42(2017), No. 38, p. 24247. doi: 10.1016/j.ijhydene.2017.07.220
    [44]
    M.S. El-Eskandarany, E. Shaban, N. Ali, F. Aldakheel, and A. Alkandary, In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles, Sci. Rep., 6(2016), art. No. 37335. doi: 10.1038/srep37335
    [45]
    T.Z. Si, X.Y. Zhang, J.J. Feng, X.L. Ding, and Y.T. Li, Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts, Rare Met., 40(2021), No. 4, p. 995. doi: 10.1007/s12598-018-1087-x
    [46]
    H.G. Gao, R. Shi, J.L. Zhu, et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Appl. Surf. Sci., 564(2021), art. No. 150302. doi: 10.1016/j.apsusc.2021.150302
    [47]
    J. Chen, G.L. Xia, Z.P. Guo, Z.G. Huang, H.K. Liu, and X.B. Yu, Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2, J. Mater. Chem. A, 3(2015), No. 31, p. 15843. doi: 10.1039/C5TA03721B
    [48]
    W. Zhu, S. Panda, C. Lu, et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2, ACS Appl. Mater. Interfaces, 12(2020), No. 45, p. 50333. doi: 10.1021/acsami.0c12767
    [49]
    D. Rahmalina, R.A. Rahman, A. Suwandi, and Ismail, The recent development on MgH2 system by 16 wt.% nickel addition and particle size reduction through ball milling: A noticeable hydrogen capacity up to 5 wt.% at low temperature and pressure, Int. J. Hydrogen Energy, 45(2020), No. 53, p. 29046. doi: 10.1016/j.ijhydene.2020.07.209
    [50]
    G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, and L.Q. Li, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnology, 29(2018), No. 26, art. No. 265705. doi: 10.1088/1361-6528/aabcf3
    [51]
    H.H. Cheng, G. Chen, Y. Zhang, Y.F. Zhu, and L.Q. Li, Boosting low-temperature de/re-hydrogenation performances of MgH2 with Pd–Ni bimetallic nanoparticles supported by mesoporous carbon, Int. J. Hydrogen Energy, 44(2019), No. 21, p. 10777. doi: 10.1016/j.ijhydene.2019.02.218
    [52]
    P. Plerdsranoy, S. Thiangviriya, P. Dansirima, et al., Synergistic effects of transition metal halides and activated carbon nanofibers on kinetics and reversibility of MgH2, J. Phys. Chem. Solids, 124(2019), p. 81. doi: 10.1016/j.jpcs.2018.09.001
    [53]
    T.P. Huang, J.X. Zou, H.B. Liu, and W.J. Ding, Effect of different transition metal fluorides TMFx (TM=Nb, Co, Ti) on hydrogen storage properties of the 3NaBH4–GdF3 system, J. Alloys Compd., 823(2020), art. No. 153716. doi: 10.1016/j.jallcom.2020.153716
    [54]
    F.H. Wang, Y.F. Liu, M.X. Gao, K. Luo, H.G. Pan, and Q.D. Wang, Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6, J. Phys. Chem. C, 113(2009), No. 18, p. 7978. doi: 10.1021/jp9011697
    [55]
    N. Patelli, M. Calizzi, A. Migliori, V. Morandi, and L. Pasquini, Hydrogen desorption below 150°C in MgH2–TiH2 composite nanoparticles: Equilibrium and kinetic properties, J. Phys. Chem. C, 121(2017), No. 21, p. 11166. doi: 10.1021/acs.jpcc.7b03169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1013) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return