Cite this article as: |
Qiuying Li, Yiheng Lu, and Zhuoyan Shao, Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 548-558. https://doi.org/10.1007/s12613-022-2517-1 |
Qiuying Li E-mail: liqy@ecust.edu.cn
[1] |
C.Y. Chen, N.W. Pu, Y.M. Liu, et al., Microwave absorption properties of holey graphene/silicone rubber composites, Composite Part B, 135(2018), p. 119. doi: 10.1016/j.compositesb.2017.10.001
|
[2] |
W.P. Li, L.Q. Zhu, J. Gu, and H.C. Liu, Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power, Composite Part B, 42(2011), No. 4, p. 626. doi: 10.1016/j.compositesb.2011.02.019
|
[3] |
J.B. Kim, S.K. Lee, and C.G. Kim, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band, Compos. Sci. Technol., 68(2008), No. 14, p. 2909. doi: 10.1016/j.compscitech.2007.10.035
|
[4] |
B. Wen, X.X. Wang, W.Q. Cao, et al., Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world, Nanoscale, 6(2014), No. 11, p. 5754. doi: 10.1039/C3NR06717C
|
[5] |
K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172. doi: 10.1016/j.biortech.2020.124172
|
[6] |
K.Q. Li, J. Chen, J.H. Peng, R. Ruan, M. Omran, and G. Chen, Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field, J. Hazard. Mater., 384(2020), art. No. 121227. doi: 10.1016/j.jhazmat.2019.121227
|
[7] |
F. Ren, Z.Z. Guo, Y.F. Shi, et al., Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels, J. Alloys Compd., 768(2018), p. 6. doi: 10.1016/j.jallcom.2018.07.209
|
[8] |
G.H. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, and G.B. Ji, Multifunctional integrated transparent film for efficient electromagnetic protection, Nano-Micro Lett., 14(2022), No. 1, art. No. 65. doi: 10.1007/s40820-022-00810-y
|
[9] |
F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
|
[10] |
A.A. Al-Ghamdi, O.A. Al-Hartomy, F.R. Al-Solamy, et al., Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber, Composite Part B, 96(2016), p. 231. doi: 10.1016/j.compositesb.2016.04.039
|
[11] |
Y.G. Xu, D.Y. Zhang, J. Cai, L.M. Yuan, and W.Q. Zhang, Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet, J. Magn. Magn. Mater., 327(2013), p. 82. doi: 10.1016/j.jmmm.2012.09.045
|
[12] |
G.Q. Wang, X.D. Chen, Y.P. Duan, and S.H. Liu, Electromagnetic properties of carbon black and Barium titanate composite materials, J. Alloys Compd., 454(2008), No. 1-2, p. 340. doi: 10.1016/j.jallcom.2006.12.077
|
[13] |
Y.G. Xu, L.M. Yuan, J. Cai, and D.Y. Zhang, Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler, J. Magn. Magn. Mater., 343(2013), p. 239. doi: 10.1016/j.jmmm.2013.04.051
|
[14] |
Z.J. Li, H. Lin, S.Q. Ding, et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon, Carbon, 167(2020), p. 148. doi: 10.1016/j.carbon.2020.05.070
|
[15] |
V.K. Singh, A. Shukla, M.K. Patra, et al., Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon, 50(2012), No. 6, p. 2202. doi: 10.1016/j.carbon.2012.01.033
|
[16] |
A.M. Gama, M.C. Rezende, and C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials, J. Magn. Magn. Mater., 323(2011), No. 22, p. 2782. doi: 10.1016/j.jmmm.2011.05.052
|
[17] |
A.P. Singh, A.K. Singh, A. Chandra, and S.K. Dhawan, Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band, AIP Adv., 1(2011), No. 2, art. No. 022147. doi: 10.1063/1.3608052
|
[18] |
U. Rentsennorov, B. Davaabal, B. Dovchin, and J. Temuujin, Adsorption of Cr (III) from aqueous media on zeolite A prepared from fused fly ash by hydrothermal synthesis, J. Ceram. Process. Res., 22(2021), No. 2, p. 232.
|
[19] |
P. Kunecki, R. Panek, M. Wdowin, T. Bień, and W. Franus, Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types, Int. J. Coal Sci. Technol., 8(2021), No. 2, p. 291. doi: 10.1007/s40789-020-00332-1
|
[20] |
E. Horszczaruk and P. Brzozowski, Effects of fluidal fly ash on abrasion resistance of underwater repair concrete, Wear, 376-377(2017), p. 15. doi: 10.1016/j.wear.2017.01.051
|
[21] |
J.C. Lee and B.D. Pandey, Bio-processing of solid wastes and secondary resources for metal extraction—A review, Waste Manage., 32(2012), No. 1, p. 3. doi: 10.1016/j.wasman.2011.08.010
|
[22] |
M.G. Miricioiu, V.C. Niculescu, C. Filote, M.S. Raboaca, and G. Nechifor, Coal fly ash derived silica nanomaterial for MMMs-application in CO2/CH4 separation, Membranes, 11(2021), No. 2, art. No. 78. doi: 10.3390/membranes11020078
|
[23] |
A. Arizmendi-Morquecho, A. Chávez-Valdez, and J. Alvarez-Quintana, High temperature thermal barrier coatings from recycled fly ash cenospheres, Appl. Therm. Eng., 48(2012), p. 117. doi: 10.1016/j.applthermaleng.2012.05.004
|
[24] |
L.Q. Wei, R.X. Che, Y.J. Jiang, and B. Yu, Study on preparation and microwave absorption property of the core–nanoshell composite materials doped with La, J. Environ. Sci., 25(2013), No. Suppl, p. S27.
|
[25] |
P.J. Bora, M. Porwal, K.J. Vinoy, Kishore, P.C. Ramamurthy, and G. Madras, Industrial waste fly ash cenosphere composites based broad band microwave absorber, Composite Part B, 134(2018), p. 151. doi: 10.1016/j.compositesb.2017.09.062
|
[26] |
B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Synthesis and microwave absorption properties of Fe-loaded fly ash-based ceramic composites, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3307. doi: 10.1021/acsaelm.0c00630
|
[27] |
B.S. Zhu, Y.Y. Li, Y.M. Tian, et al., Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution, Colloids Surf. A, 627(2021), art. No. 127127. doi: 10.1016/j.colsurfa.2021.127127
|
[28] |
M. Angappan, P.J. Bora, K.J. Vinoy, Kishore, K. Vijayaraju, and P.C. Ramamurthy, Microwave absorption efficiency of poly (vinyl-butyral)/Ultra-thin nickel coated fly ash cenosphere composite, Surf. Interfaces, 19(2020), art. No. 100430. doi: 10.1016/j.surfin.2020.100430
|
[29] |
S. Shukla, S. Seal, Z. Rahaman, and K. Scammon, Electroless copper coating of cenospheres using silver nitrate activator, Mater. Lett., 57(2002), No. 1, p. 151. doi: 10.1016/S0167-577X(02)00722-X
|
[30] |
J.Q. Liu, Y.C. Wu, and R.J. Xue, Electroless plating Ni–Co–P alloy on the surface of fly ash cenospheres, Acta Phys. Chim. Sin., 22(2006), No. 2, p. 239. doi: 10.3866/PKU.WHXB20060222
|
[31] |
H.Q. Tao, J.F. Yao, L.X. Zhang, and N.P. Xu, Preparation of magnetic ZSM-5/Ni/fly-ash hollow microspheres using fly-ash cenospheres as the template, Mater. Lett., 63(2009), No. 2, p. 203. doi: 10.1016/j.matlet.2008.09.034
|
[32] |
P.J. Bora, N. Mallik, P.C. Ramamurthy, Kishore, and G. Madras, Poly(vinyl butyral)-polyaniline-magnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding, Composite Part B, 106(2016), p. 224. doi: 10.1016/j.compositesb.2016.09.035
|
[33] |
W.Z. Li, T. Qiu, L.L. Wang, et al., Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres, ACS Appl. Mater. Interfaces, 5(2013), No. 3, p. 883. doi: 10.1021/am302551d
|
[34] |
Q. Li, J.F. Pang, B. Wang, et al., Preparation, characterization and microwave absorption properties of Barium-ferrite-coated fly-ash cenospheres, Adv. Powder Technol., 24(2013), No. 1, p. 288. doi: 10.1016/j.apt.2012.07.004
|
[35] |
G.H. Mu, X.F. Pan, H.G. Shen, and M.Y. Gu, Preparation and magnetic properties of composite powders of hollow microspheres coated with Barium ferrite, Mater. Sci. Eng. A, 445-446(2007), p. 563. doi: 10.1016/j.msea.2006.09.078
|
[36] |
B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Construction of Ni-loaded ceramic composites for efficient microwave absorption, Appl. Surf. Sci., 538(2021), art. No. 148018. doi: 10.1016/j.apsusc.2020.148018
|
[37] |
S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, and S.K. Dhawan, In situ synthesis of polypyrrole–γ-Fe2O3–fly ash nanocomposites for protection against EMI pollution, Ind. Eng. Chem. Res., 53(2014), No. 37, p. 14282. doi: 10.1021/ie500512d
|
[38] |
M. Mishra, A.P. Singh, and S.K. Dhawan, Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution, J. Alloys Compd., 557(2013), p. 244. doi: 10.1016/j.jallcom.2013.01.004
|
[39] |
A. Mali and A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by Sol-gel combustion route, Scripta. Mater., 53(2005), No. 9, p. 1065. doi: 10.1016/j.scriptamat.2005.06.037
|
[40] |
F.Z. Song, X.Q. Shen, M.Q. Liu, and J. Xiang, Formation and characterization of magnetic barium ferrite hollow fibers with high specific surface area via sol–gel process, Solid State Sci., 12(2010), No. 9, p. 1603. doi: 10.1016/j.solidstatesciences.2010.07.007
|
[41] |
S.P. Li, Y. Huang, D. Ling, et al., Enhanced microwave-absorption with carbon-encapsulated Fe–Co particles on reduced graphene oxide nanosheets with nanoscale-holes in the basal plane, J. Colloid Interface Sci., 544(2019), p. 188. doi: 10.1016/j.jcis.2019.02.035
|
[42] |
T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), No. 8, p. 2441. doi: 10.1016/j.apsusc.2007.09.063
|
[43] |
K. Wang, M.M. Chen, Z.S. He, et al., Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance, J. Alloys Compd., 755(2018), p. 154. doi: 10.1016/j.jallcom.2018.04.320
|
[44] |
M.H. Flaifel, S.H. Ahmad, M.H. Abdullah, R. Rasid, A.H. Shaari, A.A. El-Saleh, and S. Appadu, Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles, Compos. Sci. Technol., 96(2014), p. 103. doi: 10.1016/j.compscitech.2014.03.016
|
[45] |
B.Y. Chen, D. Chen, Z.T. Kang, and Y.Z. Zhang, Preparation and microwave absorption properties of Ni–Co nanoferrites, J. Alloys Compd., 618(2015), p. 222. doi: 10.1016/j.jallcom.2014.08.195
|
[46] |
C.M. Shang, G.B. Ji, W. Liu, X.M. Zhang, H.L. Lv, and Y.W. Du, One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application, RSC Adv., 5(2015), No. 98, p. 80450. doi: 10.1039/C5RA15949K
|
[47] |
G.W. Wang, X.L. Li, P. Wang, et al., Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293–673 K) in X band, J. Magn. Magn. Mater., 456(2018), p. 92. doi: 10.1016/j.jmmm.2018.02.024
|
[48] |
Y. Li, H.F. Cheng, N.N. Wang, Y.J. Zhou, and T.T. Li, Magnetic and microwave absorption properties of Fe/TiO2 nanocomposites prepared by template electrodeposition, J. Alloys Compd., 763(2018), p. 421. doi: 10.1016/j.jallcom.2018.05.282
|
[49] |
J.X. Qiu, L.J. Lan, H. Zhang, and M.Y. Gu, Microwave absorption properties of nanocomposite films of BaFe12O19 and TiO2 prepared by sol–gel method, Mater. Sci. Eng. B, 133(2006), No. 1-3, p. 191. doi: 10.1016/j.mseb.2006.06.049
|
[50] |
J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, and Z.W. Liu, Synthesis and microwave absorption properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells, ACS Appl. Mater. Interfaces, 5(2013), No. 7, p. 2503. doi: 10.1021/am3030432
|
[51] |
I. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites, J. Magn. Magn. Mater., 322(2010), No. 21, p. 3401. doi: 10.1016/j.jmmm.2010.06.036
|
[52] |
X.X. Liu, Z.Y. Zhang, and Y.P. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers, Composite Part B, 42(2011), No. 2, p. 326. doi: 10.1016/j.compositesb.2010.11.009
|
[53] |
C. Wang, X.J. Han, P. Xu, et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material, Appl. Phys. Lett., 98(2011), No. 7, art. No. 072906. doi: 10.1063/1.3555436
|
[54] |
B.S. Zhu, Y.M. Tian, L.P. Liang, et al., Two-step preparation of fly ash-based composites for microwave absorption, Int. J. Appl. Ceram. Technol., 18(2021), No. 3, p. 1043. doi: 10.1111/ijac.13700
|
[55] |
Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon, 48(2010), No. 14, p. 4074. doi: 10.1016/j.carbon.2010.07.014
|
[56] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, and J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon, 48(2010), No. 3, p. 788. doi: 10.1016/j.carbon.2009.10.028
|
[57] |
X.F. Zhou, B.B. Wang, Z.R. Jia, et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance, J. Colloid Interface Sci., 582(2021), p. 515. doi: 10.1016/j.jcis.2020.08.087
|
[58] |
N. Rezazadeh and J. Rezazadeh, Fabrication of ultra-thin, hydrophobic and flexible electromagnetic wave absorber sheets based on nano-carbon/carbonyl iron in a polypyrrole/silicone rubber matrix, J. Magn. Magn. Mater., 475(2019), p. 201. doi: 10.1016/j.jmmm.2018.11.117
|