Jianliang Zhang, Yang Li, Zhengjian Liu, Tengfei Wang, Yaozu Wang, Kejiang Li, Guilin Wang, Tao Xu, and Yong Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1830-1838. https://doi.org/10.1007/s12613-022-2518-0
Cite this article as:
Jianliang Zhang, Yang Li, Zhengjian Liu, Tengfei Wang, Yaozu Wang, Kejiang Li, Guilin Wang, Tao Xu, and Yong Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1830-1838. https://doi.org/10.1007/s12613-022-2518-0
Research Article

Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen

+ Author Affiliations
  • Corresponding authors:

    Zhengjian Liu    E-mail: liuzhengjian@ustb.edu.cn

    Yaozu Wang    E-mail: wgyozu@163.com

  • Received: 8 March 2022Revised: 31 May 2022Accepted: 6 June 2022Available online: 8 June 2022
  • Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen. Results show that wustite in both states can be reduced entirely at all temperatures. The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state, with a higher reaction rate. The hydrogen reduction of different wustite phases fits the Mampel Power model (power exponent n = 1/2) well, and this model is independent of the phase state. The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol−1 and 104.74 kJ·mol−1, when both reactants and products are in the solid state and the molten state, respectively. These values generally agree with those calculated by the model fitting method.
  • loading
  • [1]
    X.Y. Wang, B. Li, C. Lü, et al., China’s iron and steel industry carbon emissions peak pathways, Res. Environ. Sci., 35(2022), No. 2, p. 339.
    [2]
    Y.J. Shao, L. Xu, X.P. Liu, and H.Z. Chen, Discussion on solution of “carbon neutrality” in China’s steel production, China Metall., 32(2022), No. 4, p. 1.
    [3]
    Y. Xin, Y.K. Cui, J.L. Tian, et al., Application status and prospect of low carbon technology in iron and steel industry, Chin. J. Eng., 44(2022), No. 4, p. 801.
    [4]
    R. Liu, Z.F. Zhang, X.J. Liu, X. Li, H.Y. Li, and Q. Lü, Development trend and prospect of low-carbon green ironmaking technology, Iron Steel, 57(2022), No. 5, p. 1.
    [5]
    V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736. doi: 10.1016/j.jclepro.2018.08.279
    [6]
    T. Ariyama, Perspective toward long-term global goal for carbon dioxide mitigation in steel industry, Tetsu-to-Hagane, 105(2019), No. 6, p. 567. doi: 10.2355/tetsutohagane.TETSU-2019-008
    [7]
    F. Li, M.S. Chu, J. Tang, et al., Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking, Energy, 241(2022), art. No. 122922. doi: 10.1016/j.energy.2021.122922
    [8]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [9]
    D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
    [10]
    M.N.A. Tahari, F. Salleh, T.S.T. Saharuddin, A. Samsuri, S. Samidin, and M.A. Yarmo, Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations, Int. J. Hydrogen Energy, 46(2021), No. 48, p. 24791. doi: 10.1016/j.ijhydene.2020.06.250
    [11]
    Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751. doi: 10.3390/met8100751
    [12]
    C.Y. Ding, X.W. Lv, G. Li, et al., Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 24. doi: 10.1016/j.ijhydene.2017.11.075
    [13]
    H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
    [14]
    J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562. doi: 10.1007/s12613-015-1108-9
    [15]
    J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang, Production overview and main characteristics of HIsmelt process in Shandong Molong, China Metall., 28(2018), No. 5, p. 37.
    [16]
    R. Sripriya, T. Peeters, K. Meijer, C. Zeilstra, and D. van der Plas, Computational fluid dynamics and combustion modelling of HIsarna incinerator, Ironmaking Steelmaking, 43(2016), No. 3, p. 192. doi: 10.1179/1743281215Y.0000000031
    [17]
    L.Y. Xing, Z.S. Zou, Y.X. Qu, L. Shao, and J.Q. Zou, Gas-solid reduction behavior of in-flight fine hematite ore particles by hydrogen, Steel Res. Int., 90(2019), No. 1, art. No. 1800311. doi: 10.1002/srin.201800311
    [18]
    H. Katayama, S. Taguchi, and N. Tsuchiya, Reduction of iron oxide in molten slag with H2 gas, Tetsu-to-Hagane, 68(1982), No. 15, p. 2279. doi: 10.2355/tetsutohagane1955.68.15_2279
    [19]
    S. Ban-Ya, Y. Iguchi, and T. Nagasaka, Rate of reduction of liquid wustite with hydrogen, Tetsu-to-Hagane, 70(1984), No. 14, p. 1689. doi: 10.2355/tetsutohagane1955.70.14_1689
    [20]
    S. Hayashi and Y. Iguchi, Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems, ISIJ Int., 34(1994), No. 7, p. 555. doi: 10.2355/isijinternational.34.555
    [21]
    T. Nagasaka, M. Hino, and S. Ban-Ya, Interfacial kinetics of hydrogen with liquid slag containing iron oxide, Metall. Mater. Trans. B, 31(2000), No. 5, p. 945. doi: 10.1007/s11663-000-0071-6
    [22]
    M.N. Seftejani and J. Schenk, Kinetics of molten iron oxides reduction using hydrogen, [in] 7th International Congress on Science and Technology of Steelmaking, Venice, 2018.
    [23]
    B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng., 20(2012), No. 1, p. 10. doi: 10.1016/S1004-9541(12)60357-7
    [24]
    W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A, 326(2007), No. 1, p. 17. doi: 10.1016/j.apcata.2007.03.021
    [25]
    Y. Zhou, Y.M. Gao, X.J. Ma, X. Zheng, M. Wang, and B. Wang, Preparation of FeO and its stability at room temperature, J. Wuhan Univ. Sci. Technol., 36(2013), No. 5, p. 383.
    [26]
    Y.S. Sun, Y.X. Han, P. Gao, and G.F. Li, Investigation of kinetics of coal based reduction of oolitic iron ore, Ironmaking Steelmaking, 41(2014), No. 10, p. 763. doi: 10.1179/1743281214Y.0000000196
    [27]
    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
    [28]
    R.S. Xu, J.L. Zhang, G.W. Wang, et al., Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 773. doi: 10.1007/s10973-015-4972-7
    [29]
    S. Ren and J.L. Zhang, Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method, Thermochim. Acta, 561(2013), p. 36. doi: 10.1016/j.tca.2013.03.040
    [30]
    C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO–N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118. doi: 10.2355/isijinternational.ISIJINT-2016-238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(5026) PDF Downloads(129) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return