Cite this article as: |
Jianliang Zhang, Yang Li, Zhengjian Liu, Tengfei Wang, Yaozu Wang, Kejiang Li, Guilin Wang, Tao Xu, and Yong Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1830-1838. https://doi.org/10.1007/s12613-022-2518-0 |
Zhengjian Liu E-mail: liuzhengjian@ustb.edu.cn
Yaozu Wang E-mail: wgyozu@163.com
[1] |
X.Y. Wang, B. Li, C. Lü, et al., China’s iron and steel industry carbon emissions peak pathways, Res. Environ. Sci., 35(2022), No. 2, p. 339.
|
[2] |
Y.J. Shao, L. Xu, X.P. Liu, and H.Z. Chen, Discussion on solution of “carbon neutrality” in China’s steel production, China Metall., 32(2022), No. 4, p. 1.
|
[3] |
Y. Xin, Y.K. Cui, J.L. Tian, et al., Application status and prospect of low carbon technology in iron and steel industry, Chin. J. Eng., 44(2022), No. 4, p. 801.
|
[4] |
R. Liu, Z.F. Zhang, X.J. Liu, X. Li, H.Y. Li, and Q. Lü, Development trend and prospect of low-carbon green ironmaking technology, Iron Steel, 57(2022), No. 5, p. 1.
|
[5] |
V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736. doi: 10.1016/j.jclepro.2018.08.279
|
[6] |
T. Ariyama, Perspective toward long-term global goal for carbon dioxide mitigation in steel industry, Tetsu-to-Hagane, 105(2019), No. 6, p. 567. doi: 10.2355/tetsutohagane.TETSU-2019-008
|
[7] |
F. Li, M.S. Chu, J. Tang, et al., Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking, Energy, 241(2022), art. No. 122922. doi: 10.1016/j.energy.2021.122922
|
[8] |
J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
|
[9] |
D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
|
[10] |
M.N.A. Tahari, F. Salleh, T.S.T. Saharuddin, A. Samsuri, S. Samidin, and M.A. Yarmo, Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations, Int. J. Hydrogen Energy, 46(2021), No. 48, p. 24791. doi: 10.1016/j.ijhydene.2020.06.250
|
[11] |
Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751. doi: 10.3390/met8100751
|
[12] |
C.Y. Ding, X.W. Lv, G. Li, et al., Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 24. doi: 10.1016/j.ijhydene.2017.11.075
|
[13] |
H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
|
[14] |
J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562. doi: 10.1007/s12613-015-1108-9
|
[15] |
J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang, Production overview and main characteristics of HIsmelt process in Shandong Molong, China Metall., 28(2018), No. 5, p. 37.
|
[16] |
R. Sripriya, T. Peeters, K. Meijer, C. Zeilstra, and D. van der Plas, Computational fluid dynamics and combustion modelling of HIsarna incinerator, Ironmaking Steelmaking, 43(2016), No. 3, p. 192. doi: 10.1179/1743281215Y.0000000031
|
[17] |
L.Y. Xing, Z.S. Zou, Y.X. Qu, L. Shao, and J.Q. Zou, Gas-solid reduction behavior of in-flight fine hematite ore particles by hydrogen, Steel Res. Int., 90(2019), No. 1, art. No. 1800311. doi: 10.1002/srin.201800311
|
[18] |
H. Katayama, S. Taguchi, and N. Tsuchiya, Reduction of iron oxide in molten slag with H2 gas, Tetsu-to-Hagane, 68(1982), No. 15, p. 2279. doi: 10.2355/tetsutohagane1955.68.15_2279
|
[19] |
S. Ban-Ya, Y. Iguchi, and T. Nagasaka, Rate of reduction of liquid wustite with hydrogen, Tetsu-to-Hagane, 70(1984), No. 14, p. 1689. doi: 10.2355/tetsutohagane1955.70.14_1689
|
[20] |
S. Hayashi and Y. Iguchi, Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems, ISIJ Int., 34(1994), No. 7, p. 555. doi: 10.2355/isijinternational.34.555
|
[21] |
T. Nagasaka, M. Hino, and S. Ban-Ya, Interfacial kinetics of hydrogen with liquid slag containing iron oxide, Metall. Mater. Trans. B, 31(2000), No. 5, p. 945. doi: 10.1007/s11663-000-0071-6
|
[22] |
M.N. Seftejani and J. Schenk, Kinetics of molten iron oxides reduction using hydrogen, [in] 7th International Congress on Science and Technology of Steelmaking, Venice, 2018.
|
[23] |
B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng., 20(2012), No. 1, p. 10. doi: 10.1016/S1004-9541(12)60357-7
|
[24] |
W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A, 326(2007), No. 1, p. 17. doi: 10.1016/j.apcata.2007.03.021
|
[25] |
Y. Zhou, Y.M. Gao, X.J. Ma, X. Zheng, M. Wang, and B. Wang, Preparation of FeO and its stability at room temperature, J. Wuhan Univ. Sci. Technol., 36(2013), No. 5, p. 383.
|
[26] |
Y.S. Sun, Y.X. Han, P. Gao, and G.F. Li, Investigation of kinetics of coal based reduction of oolitic iron ore, Ironmaking Steelmaking, 41(2014), No. 10, p. 763. doi: 10.1179/1743281214Y.0000000196
|
[27] |
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
|
[28] |
R.S. Xu, J.L. Zhang, G.W. Wang, et al., Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 773. doi: 10.1007/s10973-015-4972-7
|
[29] |
S. Ren and J.L. Zhang, Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method, Thermochim. Acta, 561(2013), p. 36. doi: 10.1016/j.tca.2013.03.040
|
[30] |
C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO–N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118. doi: 10.2355/isijinternational.ISIJINT-2016-238
|