Cite this article as: |
Jingjing Zhang, Bing Zhang, Xiubo Xie, Cui Ni, Chuanxin Hou, Xueqin Sun, Xiaoyang Yang, Yuping Zhang, Hideo Kimura, and Wei Du, Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 14-24. https://doi.org/10.1007/s12613-022-2519-z |
Xiubo Xie E-mail: xiuboxie@ytu.edu.cn
Wei Du E-mail: duwei@ytu.edu.cn
[1] |
Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, M. Jia, and X.L. Wang, Sb2S3 nanorods/porous-carbon composite from natural stibnite ore as high-performance anode for lithium-ion batteries, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2051. doi: 10.1016/S1003-6326(21)65637-6
|
[2] |
H.J. Cao, C. Pistidda, M.V. Castro Riglos, et al., Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH2)2–LiH, Sustainable Energy Fuels, 4(2020), No. 4, p. 1915. doi: 10.1039/C9SE01284B
|
[3] |
X.B. Zang, L.T. Li, Z.X. Sun, et al., A simple physical mixing method for MnO2/MnO nanocomposites with superior Zn2+ storage performance, Trans. Nonferrous Met. Soc. China, 30(2020), No. 12, p. 3347. doi: 10.1016/S1003-6326(20)65466-8
|
[4] |
B.P. Zhang, G.L. Xia, D.L. Sun, F. Fang, and X.B. Yu, Magnesium hydride nanoparticles self-assembled on graphene as anode material for high-performance lithium-ion batteries, ACS Nano, 12(2018), No. 4, p. 3816. doi: 10.1021/acsnano.8b01033
|
[5] |
Q.L. Zhu and Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci., 8(2015), No. 2, p. 478. doi: 10.1039/C4EE03690E
|
[6] |
Z.J. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, and O.K. Farha, Porous materials for hydrogen storage, Chem, 8(2022), No. 3, p. 693. doi: 10.1016/j.chempr.2022.01.012
|
[7] |
X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101. doi: 10.1016/j.cej.2021.130101
|
[8] |
H. Cho, S. Hyeon, H. Park, J. Kim, and E.S. Cho, Ultrathin magnesium nanosheet for improved hydrogen storage with fishbone shaped one-dimensional carbon matrix, ACS Appl. Energy Mater., 3(2020), No. 9, p. 8143. doi: 10.1021/acsaem.0c01259
|
[9] |
X.B. Xie, C.X. Hou, D. Wu, et al., Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application, J. Alloys Compd., 891(2022), art. No. 161967. doi: 10.1016/j.jallcom.2021.161967
|
[10] |
Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
|
[11] |
V. Berezovets, A. Kytsya, I. Zavaliy, and V.A. Yartys, Kinetics and mechanism of MgH2 hydrolysis in MgCl2 solutions, Int. J. Hydrogen Energy, 46(2021), No. 80, p. 40278. doi: 10.1016/j.ijhydene.2021.09.249
|
[12] |
F. Tanaka, Y. Nakagawa, S. Isobe, and N. Hashimoto, Hydrogen absorption/desorption properties of light metal hydroxide systems, Int. J. Energy Res., 44(2020), No. 4, p. 2941. doi: 10.1002/er.5113
|
[13] |
D.J. Han, K.R. Bang, H. Cho, and E.S. Cho, Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride, Korean J. Chem. Eng., 37(2020), No. 8, p. 1306. doi: 10.1007/s11814-020-0630-2
|
[14] |
X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064. doi: 10.1016/j.mtnano.2019.100064
|
[15] |
N.A. Ali, N.A. Sazelee, and M. Ismail, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials, Int. J. Hydrogen Energy, 46(2021), No. 62, p. 31674. doi: 10.1016/j.ijhydene.2021.07.058
|
[16] |
T. Sadhasivam, H.T. Kim, S. Jung, S.H. Roh, J.H. Park, and H.Y. Jung, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review, Renewable Sustainable Energy Rev., 72(2017), p. 523. doi: 10.1016/j.rser.2017.01.107
|
[17] |
M. Tian and C.X. Shang, Mg-based composites for enhanced hydrogen storage performance, Int. J. Hydrogen Energy, 44(2019), No. 1, p. 338. doi: 10.1016/j.ijhydene.2018.02.119
|
[18] |
V.V. Berezovets, R.V. Denys, I.Y. Zavaliy, and Y.V. Kosarchyn, Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 47(2022), No. 11, p. 7289. doi: 10.1016/j.ijhydene.2021.03.019
|
[19] |
S. Zholdayakova, R. Gemma, H.H. Uchida, M. Sato, and Y. Matsumura, Mechanical composition control for Ti-based hydrogen storage alloys, e-J. Surf. Sci. Nanotechnol., 16(2018), p. 298. doi: 10.1380/ejssnt.2018.298
|
[20] |
T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318. doi: 10.1007/s12613-020-2040-1
|
[21] |
S. Chandra, P. Sharma, P. Muthukumar, and S.S.V. Tatiparti, Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes, Int. J. Hydrogen Energy, 46(2021), No. 36, p. 19031. doi: 10.1016/j.ijhydene.2021.03.056
|
[22] |
N.X. Zhou, M. Yamaguchi, H. Miyaoka, and Y. Kojima, Temperature rise of LaNi5-based alloys by hydrogen adsorption, Chem. Commun., 57(2021), No. 74, p. 9374. doi: 10.1039/D1CC02358F
|
[23] |
L. Fu, Research on battery technology of borohydride new hydrogen energy material, IOP Conf. Ser.: Earth Environ. Sci., 692(2021), No. 2, art. No. 022002. doi: 10.1088/1755-1315/692/2/022002
|
[24] |
Q.W. Lai, Y.W. Yang, and K.F. Aguey-Zinsou, Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage, Int. J. Hydrogen Energy, 44(2019), No. 41, p. 23225. doi: 10.1016/j.ijhydene.2019.07.041
|
[25] |
J.G. Yuan, H.X. Huang, Z. Jiang, et al., Ni-doped carbon nanotube-Mg(BH4)2 composites for hydrogen storage, ACS Appl. Nano Mater., 4(2021), No. 2, p. 1604. doi: 10.1021/acsanm.0c02738
|
[26] |
C.A.G. Beatrice, B.R. Moreira, A.D. de Oliveira, F.R. Passador, G.R. de Almeida Neto, D.R. Leiva, and L.A. Pessan, Development of polymer nanocomposites with sodium alanate for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5337. doi: 10.1016/j.ijhydene.2019.06.169
|
[27] |
N. Hosseinabadi, The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications, Int. J. Hydrogen Energy, 46(2021), No. 7, p. 5025.
|
[28] |
K. Suárez-Alcántara, J.R. Tena-Garcia, and R. Guerrero-Ortiz, Alanates, a comprehensive review, Materials, 12(2019), No. 17, art. No. 2724. doi: 10.3390/ma12172724
|
[29] |
R. Kumar, A. Karkamkar, M. Bowden, and T. Autrey, Solid-state hydrogen rich boron-nitrogen compounds for energy storage, Chem. Soc. Rev., 48(2019), No. 21, p. 5350. doi: 10.1039/C9CS00442D
|
[30] |
T.K. Nielsen, F. Besenbacher, and T.R. Jensen, Nanoconfined hydrides for energy storage, Nanoscale, 3(2011), No. 5, p. 2086. doi: 10.1039/c0nr00725k
|
[31] |
K. Wang, X. Zhang, Z.H. Ren, X.L. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, and Y.F. Liu, Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature, Energy Storage Mater., 23(2019), p. 79. doi: 10.1016/j.ensm.2019.05.029
|
[32] |
M.Y. Song and Y.J. Kwak, Hydrogenation and dehydrogenation behaviors of Mg2Ni synthesized by sintering pelletized mixtures under an Ar atmosphere, J. Nanosci. Nanotechnol., 19(2019), No. 10, p. 6571. doi: 10.1166/jnn.2019.17082
|
[33] |
P. de Rango, D. Fruchart, V. Aptukov, and N. Skryabina, Fast forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 14, p. 7912. doi: 10.1016/j.ijhydene.2019.07.124
|
[34] |
J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
|
[35] |
Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
|
[36] |
X. Zhou, Z.F. Liu, F. Su, and Y.F. Fan, Magnesium composites with hybrid nano-reinforcements: 3D simulation of dynamic tensile response at elevated temperatures, Trans. Nonferrous Met. Soc. China, 31(2021), No. 3, p. 636. doi: 10.1016/S1003-6326(21)65525-5
|
[37] |
J.F. Zhang, Z.N. Li, Y.F. Wu, et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials, RSC Adv., 9(2019), No. 1, p. 408. doi: 10.1039/C8RA05596C
|
[38] |
H. Yong, X. Wei, J.F. Hu, et al., Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy, Renewable Energy, 162(2020), p. 2153. doi: 10.1016/j.renene.2020.10.047
|
[39] |
J.D. Li, B. Li, H.Y. Shao, W. Li, and H.J. Lin, Catalysis and downsizing in Mg-based hydrogen storage materials, Catalysts, 8(2018), No. 2, art. No. 89. doi: 10.3390/catal8020089
|
[40] |
M.D. Seo, A. Kim, and H. Jung, Co metal nanoparticles incorporated three-dimensional mesoporous graphene nanohybrids for electrochemical hydrogen storage, J. Solid State Chem., 269(2019), p. 151. doi: 10.1016/j.jssc.2018.09.026
|
[41] |
X.L. Yang, L. Ji, N.H. Yan, et al., Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage, Dalton Trans., 48(2019), No. 33, p. 12699. doi: 10.1039/C9DT02084E
|
[42] |
J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
|
[43] |
D.M. Gattia, M. Jangir, and I.P. Jain, Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications, J. Alloys Compd., 801(2019), p. 188. doi: 10.1016/j.jallcom.2019.06.067
|
[44] |
M. Wiesinger, B. Maitland, H. Elsen, J. Pahl, and S. Harder, Stabilizing magnesium hydride complexes with neutral ligands, Eur. J. Inorg. Chem., 2019(2019), No. 41, p. 4433. doi: 10.1002/ejic.201900936
|
[45] |
S.R. Chen, R.M. Tao, C. Guo, et al., A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials, Energy Storage Mater., 41(2021), p. 758. doi: 10.1016/j.ensm.2021.06.043
|
[46] |
Y.Y. Shang, C. Pistidda, G. Gizer, T. Klassen, and M. Dornheim, Mg-based materials for hydrogen storage, J. Magnes. Alloys, 9(2021), No. 6, p. 1837. doi: 10.1016/j.jma.2021.06.007
|
[47] |
J.J. Liang and W.C.P. Kung, Confinement of Mg–MgH2 systems into carbon nanotubes changes hydrogen sorption energetics, J. Phys. Chem. B, 109(2005), No. 38, p. 17837. doi: 10.1021/jp052134a
|
[48] |
Y.N. Liu, J.L. Zhu, Z.B. Liu, Y.F. Zhu, J.G. Zhang, and L.Q. Li, Magnesium nanoparticles with Pd decoration for hydrogen storage, Front. Chem., 7(2020), art. No. 949. doi: 10.3389/fchem.2019.00949
|
[49] |
J. Asselin, C. Boukouvala, E.R. Hopper, Q.M. Ramasse, J.S. Biggins, and E. Ringe, Tents, chairs, tacos, kites, and rods: Shapes and plasmonic properties of singly twinned magnesium nanoparticles, ACS Nano, 14(2020), No. 5, p. 5968. doi: 10.1021/acsnano.0c01427
|
[50] |
A. Schneemann, J.L. White, S. Kang, et al., Nanostructured metal hydrides for hydrogen storage, Chem. Rev., 118(2018), No. 22, p. 10775. doi: 10.1021/acs.chemrev.8b00313
|
[51] |
F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, p. 7334. doi: 10.1039/c2cc30740e
|
[52] |
C.Q. Zhou, C.D. Hu, Y.T. Li, and Q.A. Zhang, Crystallite growth characteristics of Mg during hydrogen desorption of MgH2, Prog. Nat. Sci. Mater. Int., 30(2020), No. 2, p. 246. doi: 10.1016/j.pnsc.2020.02.003
|
[53] |
Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
|
[54] |
Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
|
[55] |
F.M. Nyahuma, L.T. Zhang, M.Y. Song, et al., Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1788. doi: 10.1007/s12613-021-2303-5
|
[56] |
Y. Jia, C.H. Sun, S.H. Shen, J. Zou, S.S. Mao, and X.D. Yao, Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renewable Sustainable Energy Rev., 44(2015), p. 289. doi: 10.1016/j.rser.2014.12.032
|
[57] |
Y.S. Au, Y.G. Yan, K.P. de Jong, A. Remhof, and P.E. de Jongh, Pore confined synthesis of magnesium boron hydride nanoparticles, J. Phys. Chem. C, 118(2014), No. 36, p. 20832. doi: 10.1021/jp507568p
|
[58] |
Z.Y. Han, M.L. Yeboah, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation, Appl. Surf. Sci., 504(2020), art. No. 144491. doi: 10.1016/j.apsusc.2019.144491
|
[59] |
Z. Ding, H. Li, and L. Shaw, New insights into the solid-state hydrogen storage of nanostructured LiBH4–MgH2 system, Chem. Eng. J., 385(2020), art. No. 123856. doi: 10.1016/j.cej.2019.123856
|
[60] |
Z.F. Wu, B. Tan, W.P. Lustig, et al., Magnesium based coordination polymers: Syntheses, structures, properties and applications, Coord. Chem. Rev., 399(2019), art. No. 213025. doi: 10.1016/j.ccr.2019.213025
|
[61] |
K.F. Aguey-Zinsou and J.R. Ares-Fernández, Hydrogen in magnesium: New perspectives toward functional stores, Energy Environ. Sci., 3(2010), No. 5, p. 526. doi: 10.1039/b921645f
|
[62] |
A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602. doi: 10.1016/j.enconman.2018.03.088
|
[63] |
J. Cui, H. Wang, D.L. Sun, Q.A. Zhang, and M. Zhu, Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition, Rare Met., 35(2016), No. 5, p. 401. doi: 10.1007/s12598-014-0272-9
|
[64] |
H. Liu, P. Sun, R.C. Bowman Jr, Z.Z. Fang, Y. Liu, and C.S. Zhou, Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride, J. Power Sources, 454(2020), art. No. 227936. doi: 10.1016/j.jpowsour.2020.227936
|
[65] |
H.Y. Shao, L.Q. He, H.J. Lin, and H.W. Li, Progress and trends in magnesium-based materials for energy-storage research: A review, Energy Technol., 6(2018), No. 3, p. 445. doi: 10.1002/ente.201700401
|
[66] |
Y. Wang, Z.M. Ding, X.J. Li, et al., Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres, Dalton Trans., 49(2020), No. 11, p. 3495. doi: 10.1039/D0DT00025F
|
[67] |
M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, and V.A. Yartys, Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57(2013), p. 146. doi: 10.1016/j.carbon.2013.01.058
|
[68] |
M. Matsumoto, T. Kita, and K. Tanaka, Hydrogen adsorption/desorption properties of anhydrous metal oxalates; metal = Mg2+ and Ca2+, Bull. Chem. Soc. Jpn., 93(2020), No. 8, p. 985. doi: 10.1246/bcsj.20200084
|
[69] |
M. Chen, Y.H. Pu, Z.Y. Li, et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2, Nano Res., 13(2020), No. 8, p. 2063. doi: 10.1007/s12274-020-2808-7
|
[70] |
R. Bardhan, A.M. Ruminski, A. Brand, and J.J. Urban, Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials, Energy Environ. Sci., 4(2011), No. 12, p. 4882. doi: 10.1039/c1ee02258j
|
[71] |
D. Mukherjee and J. Okuda, Molecular magnesium hydrides, Angew. Chem. Int. Ed., 57(2018), No. 6, p. 1458. doi: 10.1002/anie.201708592
|
[72] |
S. Cheung, W.Q. Deng, A.C.T. van Duin, and W.A. Goddard III, ReaxFFMgH reactive force field for magnesium hydride systems, J. Phys. Chem. A, 109(2005), No. 5, p. 851. doi: 10.1021/jp0460184
|
[73] |
J.L. White, N.A. Strange, J.D. Sugar, et al., Melting of magnesium borohydride under high hydrogen pressure: Thermodynamic stability and effects of nanoconfinement, Chem. Mater., 32(2020), No. 13, p. 5604. doi: 10.1021/acs.chemmater.0c01050
|
[74] |
Q.Y. Zhang, Y.K. Huang, T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953. doi: 10.1016/j.jallcom.2020.153953
|
[75] |
Z.W. Ma, Q.Y. Zhang, S. Panda, et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage, Sustainable Energy Fuels, 4(2020), No. 9, p. 4694. doi: 10.1039/D0SE00818D
|
[76] |
A. Schneemann, L.F. Wan, A.S. Lipton, et al., Nanoconfinement of molecular magnesium borohydride captured in a bipyridine-functionalized metal-organic framework, ACS Nano, 14(2020), No. 8, p. 10294. doi: 10.1021/acsnano.0c03764
|
[77] |
P.A. Song, J.F. Dai, G.R. Chen, Y.M. Yu, Z.P. Fang, W.W. Lei, S.Y. Fu, H. Wang, and Z.G. Chen, Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement, ACS Nano, 12(2018), No. 9, p. 9266. doi: 10.1021/acsnano.8b04002
|
[78] |
D.P.E. de Jongh and D.P. Adelhelm, Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals, ChemSusChem, 3(2010), No. 12, p. 1332. doi: 10.1002/cssc.201000248
|
[79] |
L. Wang, A. Rawal, M.Z. Quadir, and K.F. Aguey-Zinsou, Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility, Int. J. Hydrogen Energy, 42(2017), No. 20, p. 14144. doi: 10.1016/j.ijhydene.2017.04.104
|
[80] |
X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, and M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci., 88(2017), p. 1. doi: 10.1016/j.pmatsci.2017.03.001
|
[81] |
G.L. Xia, Y.B. Tan, X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981. doi: 10.1002/adma.201502005
|
[82] |
G.L. Xia, Y.B. Tan, F.L. Wu, et al., Graphene-wrapped reversible reaction for advanced hydrogen storage, Nano Energy, 26(2016), p. 488. doi: 10.1016/j.nanoen.2016.06.016
|
[83] |
T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, and T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials, ACS Nano, 3(2009), No. 11, p. 3521. doi: 10.1021/nn901072w
|
[84] |
P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, et al., The preparation of carbon-supported magnesium nanoparticles using melt infiltration, Chem. Mater., 19(2007), No. 24, p. 6052. doi: 10.1021/cm702205v
|
[85] |
N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.03.01
|
[86] |
J.H. Guo, S.J. Li, Y. Su, and G. Chen, Theoretical study of hydrogen storage by spillover on porous carbon materials, Int. J. Hydrogen Energy, 45(2020), No. 48, p. 25900. doi: 10.1016/j.ijhydene.2019.12.146
|
[87] |
X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160. doi: 10.1016/j.cej.2021.131160
|
[88] |
T.T. le, C. Pistidda, V.H. Nguyen, et al., Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23723. doi: 10.1016/j.ijhydene.2021.04.150
|
[89] |
R.J. White, R. Luque, V.L. Budarin, J.H. Clark, and D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev., 38(2009), No. 2, p. 481. doi: 10.1039/B802654H
|
[90] |
M. Paskevicius, H.Y. Tian, D.A. Sheppard, et al., Magnesium hydride formation within carbon aerogel, J. Phys. Chem. C, 115(2011), No. 5, p. 1757. doi: 10.1021/jp1100768
|
[91] |
Y. Jia, C.H. Sun, L.N. Cheng, et al., Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2, Phys. Chem. Chem. Phys., 15(2013), No. 16, p. 5814. doi: 10.1039/c3cp50515d
|
[92] |
K.S. Xia, Q.M. Gao, C.D. Wu, S.Q. Song, and M.R. Ruan, Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3, Carbon, 45(2007), No. 10, p. 1989. doi: 10.1016/j.carbon.2007.06.002
|
[93] |
S.S. Shinde, D.H. Kim, J.Y. Yu, and J.H. Lee, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage, Nanoscale, 9(2017), No. 21, p. 7094. doi: 10.1039/C7NR01699A
|
[94] |
L.M. Sanz-Moral, A. Navarrete, G. Sturm, et al., Release of hydrogen from nanoconfined hydrides by application of microwaves, J. Power Sources, 353(2017), p. 131. doi: 10.1016/j.jpowsour.2017.03.110
|
[95] |
P. Agarwala, S.K. Pati, and L. Roy, Unravelling the possibility of hydrogen storage on naphthalene dicarboxylate-based MOF linkers: A theoretical perspective, Mol. Phys., 118(2020), No. 21-22, art. No. e1757169. doi: 10.1080/00268976.2020.1757169
|
[96] |
W.W. Sun, S.F. Li, J.F. Mao, et al., Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation, Dalton Trans., 40(2011), No. 21, p. 5673. doi: 10.1039/c0dt01727b
|
[97] |
S. Atashrouz and M. Rahmani, Predicting hydrogen storage capacity of metal–organic frameworks using group method of data handling, Neural Comput. Appl., 32(2020), No. 18, p. 14851. doi: 10.1007/s00521-020-04837-3
|
[98] |
K.K. Gangu, S. Maddila, S.B. Mukkamala, and S.B. Jonnalagadda, Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review, J. Energy Chem., 30(2019), p. 132. doi: 10.1016/j.jechem.2018.04.012
|
[99] |
A. Salehabadi, N. Morad, and M.I. Ahmad, A study on electrochemical hydrogen storage performance of β-copper phthalocyanine rectangular nanocuboids, Renewable Energy, 146(2020), p. 497. doi: 10.1016/j.renene.2019.06.176
|
[100] |
A. Ahmed, Y.Y. Liu, J. Purewal, et al., Balancing gravimetric and volumetric hydrogen density in MOFs, Energy Environ. Sci., 10(2017), No. 11, p. 2459. doi: 10.1039/C7EE02477K
|
[101] |
L. Ren, W. Zhu, Q.Y. Zhang, et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage, Chem. Eng. J., 434(2022), art. No. 134701. doi: 10.1016/j.cej.2022.134701
|
[102] |
Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790. doi: 10.1016/j.cej.2020.126790
|
[103] |
Q.W. Lai and K.F. Aguey-Zinsou, Destabilisation of Ca(BH4)2 and Mg(BH4)2 via confinement in nanoporous Cu2S hollow spheres, Sustainable Energy Fuels, 1(2017), No. 6, p. 1308. doi: 10.1039/C7SE00121E
|
[104] |
X.B. Xie, X.J. Ma, P. Liu, J.X. Shang, X.G. Li, and T. Liu, Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 5937. doi: 10.1021/acsami.6b13222
|
[105] |
Y.L. Li, H. Yuan, Y.B. Chen, X.Y. Wei, K.Y. Sui, and Y.Q. Tan, Application and exploration of nanofibrous strategy in electrode design, J. Mater. Sci. Technol., 74(2021), p. 189. doi: 10.1016/j.jmst.2020.10.015
|
[106] |
G.Z. Li, H. Yuan, J.J. Mou, et al., Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes, Compos. Commun., 29(2022), art. No. 101043. doi: 10.1016/j.coco.2021.101043
|
[107] |
C.W. Duan, Y.T. Tian, X.Y. Wang, et al., Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2, Renewable Energy, 187(2022), p. 417. doi: 10.1016/j.renene.2022.01.048
|
[108] |
B.G. Liu, B. Zhang, H.X. Huang, et al., Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.08.019
|
[109] |
B. Liu, B. Zhang, X. Chen, et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst, Mater. Today Nano, 17(2022), art. No. 100168. doi: 10.1016/j.mtnano.2021.100168
|