Shipeng Wang, Ziyan Liu, Qiangchun Liu, Baojun Wang, Wei Wei, Hao Wu, Zijie Xu, Shikuo Li, Fangzhi Huang,  and Hui Zhang, Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 494-503. https://doi.org/10.1007/s12613-022-2524-2
Cite this article as:
Shipeng Wang, Ziyan Liu, Qiangchun Liu, Baojun Wang, Wei Wei, Hao Wu, Zijie Xu, Shikuo Li, Fangzhi Huang,  and Hui Zhang, Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 494-503. https://doi.org/10.1007/s12613-022-2524-2
Research Article

Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution

+ Author Affiliations
  • Corresponding authors:

    Shikuo Li    E-mail: lishikuo@ahu.edu.cn

    Fangzhi Huang    E-mail: huangfangzhi@163.com

    Hui Zhang    E-mail: zhhui@ahu.edu.cn

  • Received: 12 April 2022Revised: 14 June 2022Accepted: 7 July 2022Available online: 9 July 2022
  • Lightweight and efficient carbon-based microwave absorbents are significant in addressing the increasing severity of electromagnetic pollution. In this study, hierarchical NiO/Ni nanosheets with a tuneable phase and morphology supported on a carbon fiber substrate (CF@NiO/Ni) were fabricated using a hydrothermal approach and post-annealing treatment. As the annealing temperature increases, more metallic Ni is formed, and an apparent porosity appears on the sheet surface. Benefiting from the advantages of a three-dimensional (3D) conducting network, hierarchical porous structure, reinforced dipole/interface polarization, multiple scattering, and good impedance matching, the CF@NiO/Ni-500 composite exhibits an excellent microwave absorption performance even at a filling rate of only 3wt%. Specifically, its minimal reflection loss is −43.92 dB, and the qualified bandwidth is up to 5.64 GHz. In addition, the low radar cross-section area of the CF@NiO/Ni composite coating confirms its strong ability to suppress electromagnetic wave scattering. We expect that this work could contribute to a deeper understanding of the phase and morphology evolution in enhancing microwave absorption.
  • loading
  • Supplementary Information-s12613-022-2524-2.docx
  • [1]
    B.Y. Taishi, Y.T. Yang, X.Q. Wu, J.C. Xu, and S.G. Huang, Dual-band 3D electrically small antenna based on split ring resonators, Adv. Compos. Hybrid Mater., 5(2022), No. 1, p. 350. doi: 10.1007/s42114-021-00370-6
    [2]
    Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049. doi: 10.1002/adma.201405788
    [3]
    X.L. Li, X.W. Yin, C.Q. Song, et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1803938. doi: 10.1002/adfm.201803938
    [4]
    Q.H. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486. doi: 10.1002/adma.201503149
    [5]
    S. ur Rehman, J.M. Wang, Q.H. Luo, et al., Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties, Chem. Eng. J., 373(2019), p. 122. doi: 10.1016/j.cej.2019.05.040
    [6]
    X.L. Li, X.W. Yin, H.L. Xu, et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band, ACS Appl. Mater. Interfaces, 10(2018), No. 40, p. 34524. doi: 10.1021/acsami.8b13658
    [7]
    L.Y. Liang, R.S. Yang, G.J. Han, et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2644. doi: 10.1021/acsami.9b18504
    [8]
    L.S. Xing, X. Li, Z.C. Wu, et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption, Chem. Eng. J., 379(2020), art. No. 122241. doi: 10.1016/j.cej.2019.122241
    [9]
    M. Green and X.B. Chen, Recent progress of nanomaterials for microwave absorption, J. Materiomics, 5(2019), No. 4, p. 503. doi: 10.1016/j.jmat.2019.07.003
    [10]
    J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, and H.J. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application, Composites Part B, 176(2019), art. No. 107240. doi: 10.1016/j.compositesb.2019.107240
    [11]
    W.J. Duan, X.D. Li, Y. Wang, et al., Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties, Appl. Surf. Sci., 427(2018), p. 594. doi: 10.1016/j.apsusc.2017.08.034
    [12]
    P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
    [13]
    P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, and Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 368(2019), p. 285. doi: 10.1016/j.cej.2019.02.193
    [14]
    X.Y. Zhu, H.F. Qiu, P. Chen, G.Z. Chen, and W.X. Min, Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band, Carbon, 173(2021), p. 1. doi: 10.1016/j.carbon.2020.10.055
    [15]
    G.Z. Shen, B.Q. Mei, H.Y. Wu, H.Y. Wei, X.M. Fang, and Y.W. Xu, Microwave electromagnetic and absorption properties of N-doped ordered mesoporous carbon decorated with ferrite nanoparticles, J. Phys. Chem. C, 121(2017), No. 7, p. 3846. doi: 10.1021/acs.jpcc.6b10906
    [16]
    J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv, and J.J. Yang, Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption, Adv. Funct. Mater., 30(2020), No. 45, art. No. 2002595. doi: 10.1002/adfm.202002595
    [17]
    Y.S. Wei, J.L. Yue, X.Z. Tang, Z.J. Du, and X.Z. Huang, Enhanced magnetic and microwave absorption properties of FeCo-SiO2 nanogranular film functionalized carbon fibers fabricated with the radio frequency magnetron method, Appl. Surf. Sci., 428(2018), p. 296. doi: 10.1016/j.apsusc.2017.09.079
    [18]
    D.D. Min, W.C. Zhou, Y.C. Qing, F. Luo, and D.M. Zhu, Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber, J. Alloys Compd., 744(2018), p. 629. doi: 10.1016/j.jallcom.2018.02.076
    [19]
    P.B. Liu, C.Y. Zhu, S. Gao, C. Guan, Y. Huang, and W.J. He, N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption, Carbon, 163(2020), p. 348. doi: 10.1016/j.carbon.2020.03.041
    [20]
    Z. Cheng, Y.S. Cao, R.F. Wang, et al., Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance, Carbon, 185(2021), p. 669. doi: 10.1016/j.carbon.2021.09.053
    [21]
    Y.S. Huo, Y.J. Tan, K. Zhao, Z.X. Lu, L.Y. Zhong, and Y.F. Tang, Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology, Chem. Phys. Lett., 763(2021), art. No. 138230. doi: 10.1016/j.cplett.2020.138230
    [22]
    H.S. Liang, H. Xing, M. Qin, and H.J. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials, Composites Part A, 135(2020), art. No. 105959. doi: 10.1016/j.compositesa.2020.105959
    [23]
    J.B. Chen, J. Zheng, Q.Q. Huang, F. Wang, and G.B. Ji, Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles, ACS Appl. Mater. Interfaces, 13(2021), No. 30, p. 36182. doi: 10.1021/acsami.1c09430
    [24]
    S. Bandaru, N. Murthy, R. Kulkarni, and N.J. English, Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies, J. Mater. Sci. Technol., 86(2021), p. 127. doi: 10.1016/j.jmst.2021.01.041
    [25]
    Z.H. Zhao, K.C. Kou, and H.J. Wu, 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber, J. Colloid Interface Sci., 574(2020), p. 1. doi: 10.1016/j.jcis.2020.04.037
    [26]
    C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen, and C. Gao, Porous graphene microflowers for high-performance microwave absorption, Nano-Micro Lett., 10(2017), No. 2, p. 1.
    [27]
    L.N. Huang, C.G. Chen, X.Y. Huang, S.C. Ruan, and Y.J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites, Composites Part B, 164(2019), p. 583. doi: 10.1016/j.compositesb.2019.01.081
    [28]
    K.N. Patel, M.P. Deshpande, K. Chauhan, et al., Effect of Mn doping concentration on structural, vibrational and magnetic properties of NiO nanoparticles, Adv. Powder Technol., 29(2018), No. 10, p. 2394. doi: 10.1016/j.apt.2018.06.018
    [29]
    B. Saravanakumar, R. Shobana, G. Ravi, V. Ganesh, and R. Yuvakkumar, Pseudocapacitive NiO/NiSnO3 electrode for supercapacitor applications, J. Electron. Mater., 47(2018), No. 11, p. 6390. doi: 10.1007/s11664-018-6611-0
    [30]
    S.P. Wang, Q.S. Li, K. Hu, S.N. Wang, Q.C. Liu, and X.K. Kong, A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption, Appl. Surf. Sci., 544(2021), art. No. 148891. doi: 10.1016/j.apsusc.2020.148891
    [31]
    S.C. Wang, H.L. Liu, J. Hu, et al., In situ synthesis of NiO@Ni micro/nanostructures as supercapacitor electrodes based on femtosecond laser adjusted electrochemical anodization, Appl. Surf. Sci., 541(2021), art. No. 148216. doi: 10.1016/j.apsusc.2020.148216
    [32]
    V. Senthilkumar, F.B. Kadumudi, N.T. Ho, et al., NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications, J. Power Sources, 303(2016), p. 363. doi: 10.1016/j.jpowsour.2015.11.034
    [33]
    L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, and R.C. Che, MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099. doi: 10.1016/j.cej.2019.123099
    [34]
    J.J. Ding, L. Wang, Y.H. Zhao, et al., Boosted interfacial polarization from multishell TiO2@Fe3O4 @PPy heterojunction for enhanced microwave absorption, Small, 15(2019), No. 36, art. No. e1902885. doi: 10.1002/smll.201902885
    [35]
    Y. Yu, C.H. Wang, Y.F. Yu, Y.T. Wang, and B. Zhang, Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts, Sci. China Chem., 63(2020), No. 10, p. 1469. doi: 10.1007/s11426-020-9795-x
    [36]
    H. Wu, Y.M. Zhong, Y.X. Tang, et al., Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme, Adv. Compos. Hybrid Mater., 5(2022), No. 1, p. 419. doi: 10.1007/s42114-021-00378-y
    [37]
    S.P. Wang, K. Hu, F. Huang, et al., Activating microwave absorption via noncovalent interactions at the interface based on metal-free graphene nanosheets, Carbon, 152(2019), p. 818. doi: 10.1016/j.carbon.2019.06.079
    [38]
    W. Zhou, L. Long, P. Xiao, et al., Silicon carbide nano-fibers in situ grown on carbon fibers for enhanced microwave absorption properties, Ceram. Int., 43(2017), No. 7, p. 5628. doi: 10.1016/j.ceramint.2017.01.095
    [39]
    Q.C. Liu, Z.F. Zi, M. Zhang, A.B. Pang, J.M. Dai, and Y.P. Sun, Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method, J. Alloys Compd., 561(2013), p. 65. doi: 10.1016/j.jallcom.2013.02.007
    [40]
    H.G. Wang, F.B. Meng, F. Huang, et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 12, p. 12142. doi: 10.1021/acsami.9b01122
    [41]
    L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. doi: 10.1016/j.cej.2021.132547
    [42]
    G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, and C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption, Chem. Mater., 23(2011), No. 6, p. 1587. doi: 10.1021/cm103441u
    [43]
    X. Sun, J.P. He, G.X. Li, et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J. Mater. Chem. C, 1(2013), No. 4, p. 765. doi: 10.1039/C2TC00159D
    [44]
    F.B. Meng, H.G. Wang, Wei, et al., Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process, Nano Res., 11(2018), No. 5, p. 2847. doi: 10.1007/s12274-017-1915-6
    [45]
    B.L. Wang, H.Y. Chen, S. Wang, et al., Construction of core-shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness, Carbon, 184(2021), p. 223. doi: 10.1016/j.carbon.2021.08.009
    [46]
    Z.H. Wang, L.X. Yang, Y. Zhou, C. Xu, M. Yan, and C. Wu, NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 13(2021), No. 14, p. 16713. doi: 10.1021/acsami.1c05007
    [47]
    N. Yang, Z.X. Luo, G.R. Zhu, et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35987. doi: 10.1021/acsami.9b11101
    [48]
    X. Li, L. Wang, W.B. You, et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units, Nanoscale, 11(2019), No. 6, p. 2694. doi: 10.1039/C8NR08601J
    [49]
    Y.C. Yin, X.F. Liu, X.J. Wei, et al., Magnetically aligned co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces, 9(2017), No. 36, p. 30850. doi: 10.1021/acsami.7b10067
    [50]
    Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. doi: 10.1002/adfm.201807624
    [51]
    S.P. Wang, Q.S. Li, K. Hu, Q.C. Liu, X.F. Liu, and X.K. Kong, Activating microwave absorption performance by reduced graphene oxide-borophene heterostructure, Composites Part A, 138(2020), art. No. 106033. doi: 10.1016/j.compositesa.2020.106033
    [52]
    J.J. Pan, X. Sun, Z.Z. Jin, et al., Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption, Composites Part B, 228(2022), art. No. 109422. doi: 10.1016/j.compositesb.2021.109422
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(739) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return