Zhaolin Li, Yaozong Yang, Jie Wang, Zhao Yang,  and Hailei Zhao, Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1947-1953. https://doi.org/10.1007/s12613-022-2526-0
Cite this article as:
Zhaolin Li, Yaozong Yang, Jie Wang, Zhao Yang,  and Hailei Zhao, Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1947-1953. https://doi.org/10.1007/s12613-022-2526-0
Research Article

Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries

+ Author Affiliations
  • Corresponding author:

    Hailei Zhao    E-mail: hlzhao@ustb.edu.cn

  • Received: 11 June 2022Revised: 10 July 2022Accepted: 12 July 2022Available online: 14 July 2022
  • Silicon suboxide (SiOx, 0 < x < 2) is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries (LIBs) due to its high theoretical specific capacity and abundant resource. However, the severe mechanical instability arising from large volume variation upon charge/discharge cycles frustrates its electrochemical performance. Here we propose a well-designed sandwich-like structure with sandwiched SiOx nanoparticles between graphene sheets and amorphous carbon-coating layer so as to improve the structural stability of SiOx anode materials during cycling. Graphene sheets and carbon layer together construct a three-dimensional conductive network around SiOx particles, which not only improves the electrode reactions kinetics, but also homogenizes local current density and thus volume variation on SiOx surface. Moreover, Si–O–C bonds between SiOx and graphene endow the strong particle adhesion on graphene sheets, which prevents SiOx peeling from graphene sheets. Owing to the synergetic effects of the structural advantages, the C/SiOx@graphene material exhibits an excellent cyclic performance such as 890 mAh/g at 0.1 C rate and 73.7% capacity retention after 100 cycles. In addition, it also delivers superior rate capability with a capacity recovery of 886 mAh/g (93.7% recovery rate) after 35 cycles of ascending steps at current range of 0.1–5 C and finally back to 0.1 C. This study provides a novel strategy to improve the structural stability of high-capacity anode materials for lithium/sodium ion batteries.
  • loading
  • 1947-Supplementary Informations.docx
  • [1]
    H.Y. Li, H.D. Li, Z.W. Yang, et al., SiOx anode: From fundamental mechanism toward industrial application, Small, 17(2021), No. 51, art. No. 2102641. doi: 10.1002/smll.202102641
    [2]
    L. Sun, Y.X. Liu, J. Wu, et al., A review on recent advances for boosting initial Coulombic efficiency of silicon anodic lithium ion batteries, Small, 18(2022), No. 5, art. No. 2102894. doi: 10.1002/smll.202102894
    [3]
    T. Chen, J. Wu, Q.L. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363(2017), p. 126. doi: 10.1016/j.jpowsour.2017.07.073
    [4]
    J.Y. Zhang, C.Q. Zhang, Z. Liu, et al., High-performance ball-milled SiOx anodes for lithium ion batteries, J. Power Sources, 339(2017), p. 86. doi: 10.1016/j.jpowsour.2016.11.044
    [5]
    J.G. Guo, W. Zhai, Q. Sun, et al., Facilely tunable core–shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode, Electrochim. Acta, 342(2020), art. No. 136068. doi: 10.1016/j.electacta.2020.136068
    [6]
    J. Peng, J. Luo, W.W. Li, et al., Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries, J. Electroanal. Chem., 880(2021), art. No. 114798. doi: 10.1016/j.jelechem.2020.114798
    [7]
    Q. Xu, J.K. Sun, Y.X. Yin, and Y.G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater., 28(2018), No. 8, art. No. 1705235. doi: 10.1002/adfm.201705235
    [8]
    Z.H. Liu, D.D. Guan, Q. Yu, et al., Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries, Energy Storage Mater., 13(2018), p. 112. doi: 10.1016/j.ensm.2018.01.004
    [9]
    W.L. Guo, X. Yan, F. Hou, et al., Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries, Carbon, 152(2019), p. 888. doi: 10.1016/j.carbon.2019.06.088
    [10]
    M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
    [11]
    Y.R. Wang, L. Zhang, X.H. Gao, L.Y. Mao, Y. Hu, and X.W. Lou, One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability, Small, 10(2014), No. 14, p. 2815. doi: 10.1002/smll.201400239
    [12]
    D.L. Cheng, L.C. Yang, R.Z. Hu, et al., Sn–C and Se–C co-bonding SnSe/few-layered graphene micro–nano structure: Route to a densely compacted and durable anode for lithium/sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 40, p. 36685. doi: 10.1021/acsami.9b12204
    [13]
    G.Q. Wang, Z.S. Wen, Y.E. Yang, et al., Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries, J. Mater. Chem. A, 6(2018), No. 17, p. 7557. doi: 10.1039/C8TA00539G
    [14]
    V.D. Khavryuchenko, O.V. Khavryuchenko, and V.V. Lisnyak, Quantum chemical insight on vibration spectra of silica systems, Mol. Simul., 33(2007), No. 6, p. 531. doi: 10.1080/08927020701203730
    [15]
    Y.F. Chen, F.F. Lai, and J.L. Li, Effect of B2O3 on structure of glassy F-free CaO–SiO2–B2O3 systems by 29Si MAS NMR and Raman spectroscopy, JOM, 72(2020), No. 3, p. 1414. doi: 10.1007/s11837-020-04006-w
    [16]
    A. Prasath, A.S. Sharma, and P. Elumalai, Nanostructured SiO2@NiO heterostructure derived from laboratory glass waste as anode material for lithium-ion battery, Ionics, 25(2019), No. 3, p. 1015. doi: 10.1007/s11581-019-02879-9
    [17]
    Z.L. Li, H.L. Zhao, P.P. Lv, et al., Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode, Adv. Funct. Mater., 28(2018), No. 31, art. No. 1605711. doi: 10.1002/adfm.201605711
    [18]
    F. Azimov, I. Markova, V. Stefanova, and K. Sharipov, Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts, J. Univ. Chem. Technol. Metall., 47(2012), No. 3, p. 333.
    [19]
    D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, and Y.F. Liu, High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization, J. Power Sources, 256(2014), p. 190. doi: 10.1016/j.jpowsour.2013.12.128
    [20]
    F.F. Wang, S. Lin, X.S. Lu, R.Y. Hong, and H.Y. Liu, Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries, Electrochim. Acta, 404(2022), art. No. 139708. doi: 10.1016/j.electacta.2021.139708
    [21]
    Y.D. Cao, S. Hans, J. Liese, et al., Si(CO)y negative electrodes for Li-ion batteries, Chem. Mater., 33(2021), No. 18, p. 7386. doi: 10.1021/acs.chemmater.1c01989
    [22]
    M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554
    [23]
    B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol–gel based silane composite film filled with functionalized graphene oxide nanosheets, Corros. Sci., 109(2016), p. 182. doi: 10.1016/j.corsci.2016.04.004
    [24]
    H.M. Xie, J.H. Dai, and D. Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1425. doi: 10.1007/s12613-022-2465-9
    [25]
    H. Zhao, Z.H. Wang, P. Lu, et al., Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design, Nano Lett., 14(2014), No. 11, p. 6704. doi: 10.1021/nl503490h
    [26]
    J. Zhao, Z.D. Lu, N. Liu, H.W. Lee, M.T. McDowell, and Y. Cui, Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents, Nat. Commun., 5(2014), No. 1, art. No. 5088. doi: 10.1038/ncomms6088
    [27]
    Z.Y. Cao, P.Y. Xu, H.W. Zhai, et al., Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density, Nano Lett., 16(2016), No. 11, p. 7235. doi: 10.1021/acs.nanolett.6b03655
    [28]
    M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
    [29]
    L.J. Fu, H. Liu, H.P. Zhang, et al., Novel TiO2/C nanocomposites for anode materials of lithium ion batteries, J. Power Sources, 159(2006), No. 1, p. 219. doi: 10.1016/j.jpowsour.2006.04.081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(1567) PDF Downloads(92) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return