Cite this article as: |
Zhaolin Li, Yaozong Yang, Jie Wang, Zhao Yang, and Hailei Zhao, Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1947-1953. https://doi.org/10.1007/s12613-022-2526-0 |
Hailei Zhao E-mail: hlzhao@ustb.edu.cn
1947-Supplementary Informations.docx |
[1] |
H.Y. Li, H.D. Li, Z.W. Yang, et al., SiOx anode: From fundamental mechanism toward industrial application, Small, 17(2021), No. 51, art. No. 2102641. doi: 10.1002/smll.202102641
|
[2] |
L. Sun, Y.X. Liu, J. Wu, et al., A review on recent advances for boosting initial Coulombic efficiency of silicon anodic lithium ion batteries, Small, 18(2022), No. 5, art. No. 2102894. doi: 10.1002/smll.202102894
|
[3] |
T. Chen, J. Wu, Q.L. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363(2017), p. 126. doi: 10.1016/j.jpowsour.2017.07.073
|
[4] |
J.Y. Zhang, C.Q. Zhang, Z. Liu, et al., High-performance ball-milled SiOx anodes for lithium ion batteries, J. Power Sources, 339(2017), p. 86. doi: 10.1016/j.jpowsour.2016.11.044
|
[5] |
J.G. Guo, W. Zhai, Q. Sun, et al., Facilely tunable core–shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode, Electrochim. Acta, 342(2020), art. No. 136068. doi: 10.1016/j.electacta.2020.136068
|
[6] |
J. Peng, J. Luo, W.W. Li, et al., Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries, J. Electroanal. Chem., 880(2021), art. No. 114798. doi: 10.1016/j.jelechem.2020.114798
|
[7] |
Q. Xu, J.K. Sun, Y.X. Yin, and Y.G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater., 28(2018), No. 8, art. No. 1705235. doi: 10.1002/adfm.201705235
|
[8] |
Z.H. Liu, D.D. Guan, Q. Yu, et al., Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries, Energy Storage Mater., 13(2018), p. 112. doi: 10.1016/j.ensm.2018.01.004
|
[9] |
W.L. Guo, X. Yan, F. Hou, et al., Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries, Carbon, 152(2019), p. 888. doi: 10.1016/j.carbon.2019.06.088
|
[10] |
M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
|
[11] |
Y.R. Wang, L. Zhang, X.H. Gao, L.Y. Mao, Y. Hu, and X.W. Lou, One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability, Small, 10(2014), No. 14, p. 2815. doi: 10.1002/smll.201400239
|
[12] |
D.L. Cheng, L.C. Yang, R.Z. Hu, et al., Sn–C and Se–C co-bonding SnSe/few-layered graphene micro–nano structure: Route to a densely compacted and durable anode for lithium/sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 40, p. 36685. doi: 10.1021/acsami.9b12204
|
[13] |
G.Q. Wang, Z.S. Wen, Y.E. Yang, et al., Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries, J. Mater. Chem. A, 6(2018), No. 17, p. 7557. doi: 10.1039/C8TA00539G
|
[14] |
V.D. Khavryuchenko, O.V. Khavryuchenko, and V.V. Lisnyak, Quantum chemical insight on vibration spectra of silica systems, Mol. Simul., 33(2007), No. 6, p. 531. doi: 10.1080/08927020701203730
|
[15] |
Y.F. Chen, F.F. Lai, and J.L. Li, Effect of B2O3 on structure of glassy F-free CaO–SiO2–B2O3 systems by 29Si MAS NMR and Raman spectroscopy, JOM, 72(2020), No. 3, p. 1414. doi: 10.1007/s11837-020-04006-w
|
[16] |
A. Prasath, A.S. Sharma, and P. Elumalai, Nanostructured SiO2@NiO heterostructure derived from laboratory glass waste as anode material for lithium-ion battery, Ionics, 25(2019), No. 3, p. 1015. doi: 10.1007/s11581-019-02879-9
|
[17] |
Z.L. Li, H.L. Zhao, P.P. Lv, et al., Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode, Adv. Funct. Mater., 28(2018), No. 31, art. No. 1605711. doi: 10.1002/adfm.201605711
|
[18] |
F. Azimov, I. Markova, V. Stefanova, and K. Sharipov, Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts, J. Univ. Chem. Technol. Metall., 47(2012), No. 3, p. 333.
|
[19] |
D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, and Y.F. Liu, High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization, J. Power Sources, 256(2014), p. 190. doi: 10.1016/j.jpowsour.2013.12.128
|
[20] |
F.F. Wang, S. Lin, X.S. Lu, R.Y. Hong, and H.Y. Liu, Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries, Electrochim. Acta, 404(2022), art. No. 139708. doi: 10.1016/j.electacta.2021.139708
|
[21] |
Y.D. Cao, S. Hans, J. Liese, et al., Si(CO)y negative electrodes for Li-ion batteries, Chem. Mater., 33(2021), No. 18, p. 7386. doi: 10.1021/acs.chemmater.1c01989
|
[22] |
M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554
|
[23] |
B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol–gel based silane composite film filled with functionalized graphene oxide nanosheets, Corros. Sci., 109(2016), p. 182. doi: 10.1016/j.corsci.2016.04.004
|
[24] |
H.M. Xie, J.H. Dai, and D. Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1425. doi: 10.1007/s12613-022-2465-9
|
[25] |
H. Zhao, Z.H. Wang, P. Lu, et al., Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design, Nano Lett., 14(2014), No. 11, p. 6704. doi: 10.1021/nl503490h
|
[26] |
J. Zhao, Z.D. Lu, N. Liu, H.W. Lee, M.T. McDowell, and Y. Cui, Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents, Nat. Commun., 5(2014), No. 1, art. No. 5088. doi: 10.1038/ncomms6088
|
[27] |
Z.Y. Cao, P.Y. Xu, H.W. Zhai, et al., Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density, Nano Lett., 16(2016), No. 11, p. 7235. doi: 10.1021/acs.nanolett.6b03655
|
[28] |
M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
|
[29] |
L.J. Fu, H. Liu, H.P. Zhang, et al., Novel TiO2/C nanocomposites for anode materials of lithium ion batteries, J. Power Sources, 159(2006), No. 1, p. 219. doi: 10.1016/j.jpowsour.2006.04.081
|