Jinpeng Qu, Yushen Zhao, Yurui Ji, Yanrong Zhu,  and Tingfeng Yi, Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 611-620. https://doi.org/10.1007/s12613-022-2532-2
Cite this article as:
Jinpeng Qu, Yushen Zhao, Yurui Ji, Yanrong Zhu,  and Tingfeng Yi, Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 611-620. https://doi.org/10.1007/s12613-022-2532-2
Research Article

Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites

+ Author Affiliations
  • Corresponding author:

    Tingfeng Yi    E-mail: tfyihit@163.com

  • Received: 17 April 2022Revised: 31 July 2022Accepted: 4 August 2022Available online: 5 August 2022
  • The Li2ZnTi3O8@LiAlO2 was synthesized by a facile high-temperature solid-state route. The LiAlO2 modification does not alter the morphology and particle size of Li2ZnTi3O8 (LZTO). The LiAlO2 modification improves the structure stability, intercalation/deintercalation reversibility of lithium-ions, and electrochemical reaction activity of Li2ZnTi3O8, and promotes the transfer of lithium ions. Benefited from the unique component, Li2ZnTi3O8@LiAlO2 (8wt%) shows a good rate performance with charge capacities of 203.9, 194.8, 187.4, 180.6, and 177.1 mAh·g−1 at 0.5, 1, 2, 3, and 5 C, respectively. Nevertheless, pure LZTO only delivers charge capacities of 134.5, 109.7, 89.4, 79.9, and 72.9 mAh·g−1 at the corresponding rates. Even at large charge–discharge rate, the Li2ZnTi3O8@LiAlO2 (8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g−1 at 5 C after 150 cycles. The introduction of LiAlO2 on the surface of Li2ZnTi3O8 enhances electronic conductivity of the composite, resulting in the good electrochemical performance of Li2ZnTi3O8@LiAlO2 composite. Li2ZnTi3O8@LiAlO2 (8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.
  • loading
  • [1]
    Y.Q. Cao, X.B. Meng, and A.D. Li, Enhanced electrochemical performances, Energy Environ. Mater., 4(2021), No. 3, p. 363. doi: 10.1002/eem2.12132
    [2]
    S.Q. Zhao, Y.J. He, Z.W. Wang, et al., Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles, Adv. Energy Mater., 12(2022), No. 26, art. No. 2201015. doi: 10.1002/aenm.202201015
    [3]
    Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
    [4]
    A.M. Huang, Y.C. Ma, J. Peng, et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1(2021), No. 2, p. 141. doi: 10.1016/j.esci.2021.11.006
    [5]
    M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
    [6]
    L.Y. Qiu, X.Q. Lai, F.F. Wang, et al., Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li-ion battery, Ceram. Int., 47(2021), No. 14, p. 19455. doi: 10.1016/j.ceramint.2021.03.282
    [7]
    H.M. Qian and X.F. Li, Progress in functional solid electrolyte interphases for boosting Li metal anode, Acta Phys. Chim. Sin., 37(2021), No. 2, art. No. 2008092.
    [8]
    C. Sun, X. Li, X.Z. Wu, et al., Improved the lithium storage capability of Na2Li2Ti6O14 by barium doping, J. Electroanal. Chem., 802(2017), p. 100. doi: 10.1016/j.jelechem.2017.09.007
    [9]
    Y.K. Ye, Z.X. Hu, J.H. Liu, et al., Research progress of theoretical studies on polarons in cathode materials of lithium-ion batteries, Acta Phys. Chim. Sin., 37(2021), No. 11, art. No. 2011003.
    [10]
    H. Chang, Y.R. Wu, X. Han, and T.F. Yi, Recent developments in advanced anode materials for lithium-ion batteries, Energy Mater., 1(2021), art. No. 100003.
    [11]
    Y. Xiao, R. Xu, L. Xu, J.F. Ding, and J.Q. Huang, Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries, Energy Mater., 1(2021), art. No. 100013.
    [12]
    X. Qiao, X.B. Yang, N. Zhang, et al., One-step in situ encapsulation of Ge nanoparticles into porous carbon network with enhanced electron/ion conductivity for lithium storage, Rare Met., 40(2021), No. 9, p. 2432. doi: 10.1007/s12598-020-01662-4
    [13]
    S.Q. Zhao, C.D. Sewell, R.P. Liu, et al., SnO2 as advanced anode of alkali-ion batteries: Inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility, Adv. Energy Mater., 10(2020), No. 6, art. No. 1902657. doi: 10.1002/aenm.201902657
    [14]
    Y. Li, T.F. Yi, X.Z. Li, et al., Li2ZnTi3O8@α-Fe2O3 composite anode material for Li-ion batteries, Ceram. Int., 47(2021), No. 13, p. 18732. doi: 10.1016/j.ceramint.2021.03.208
    [15]
    J.B. Ye, T. Chen, Q.N. Chen, W.X. Chen, Z.T. Yu, and S.R. Xu, Facile hydrothermal synthesis of SnCoS4/graphene composites with excellent electrochemical performance for reversible lithium ion storage, J. Mater. Chem. A, 4(2016), No. 34, p. 13194. doi: 10.1039/C6TA04196E
    [16]
    L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
    [17]
    H. Yang, H.L. Zhu, Y.X. Qi, N. Lun, and Y.J. Bai, Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid, J. Mater. Sci., 55(2020), No. 32, p. 15538. doi: 10.1007/s10853-020-04980-1
    [18]
    C. Chen, C.C. Ai, and X.Y. Liu, Ti(Ⅲ) self-doped Li2ZnTi3O8 as a superior anode material for Li-ion batteries, Electrochim. Acta, 265(2018), p. 448. doi: 10.1016/j.electacta.2018.01.159
    [19]
    H. Yang, J. Park, C.S. Kim, et al., Boosted electrochemical performance of Li2ZnTi3O8 enabled by ion-conductive Li2ZrO3 concomitant with superficial Zr-doping, J. Power Sources, 379(2018), p. 270. doi: 10.1016/j.jpowsour.2018.01.064
    [20]
    A.I. Inamdar, A.T.A. Ahmed, H.S. Chavan, et al., Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery, Ceram. Int., 44(2018), No. 15, p. 18625. doi: 10.1016/j.ceramint.2018.07.087
    [21]
    L. Wang, L.J. Wu, Z.H. Li, G.T. Lei, Q.Z. Xiao, and P. Zhang, Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries, Electrochim. Acta, 56(2011), No. 15, p. 5343. doi: 10.1016/j.electacta.2011.03.122
    [22]
    S. Qi, J. Pan, L.N. Shi, Y.R. Zhu, T.F. Yi, and Y. Xie, Achieving high-performance Li2ZnTi3O8 anode for advanced Li-ion batteries by molybdenum doping, Mater. Today Chem., 21(2021), art. No. 100523. doi: 10.1016/j.mtchem.2021.100523
    [23]
    S. Wang, L.J. Wang, Z.H. Meng, and R. Xun, Design of a three-dimensional-network Li2ZnTi3O8 co-modified with graphene nanosheets and carbon nanotubes as a high performance anode material for lithium-ion batteries, J. Alloys Compd., 774(2019), p. 581. doi: 10.1016/j.jallcom.2018.10.035
    [24]
    Y.X. Xu, Z.S. Hong, L.C. Xia, J. Yang, and M.D. Wei, One step sol–gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties, Electrochim. Acta, 88(2013), p. 74. doi: 10.1016/j.electacta.2012.10.044
    [25]
    H.Q. Tang, Y.K. Zhou, L.X. Zan, N.Q. Zhao, and Z.Y. Tang, Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries, Electrochim. Acta, 191(2016), p. 887. doi: 10.1016/j.electacta.2016.01.141
    [26]
    C.Y. Xu, J.L. Li, J. Sun, W.Z. Zhang, and B.M. Ji, Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li ion batteries, J. Alloys Compd., 895(2022), art. No. 162613. doi: 10.1016/j.jallcom.2021.162613
    [27]
    Z.F. Li, H. Li, Y.H. Cui, et al., Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery, J. Alloys Compd., 692(2017), p. 131. doi: 10.1016/j.jallcom.2016.09.042
    [28]
    Z.K. Fang, Y.R. Zhu, T.F. Yi, and Y. Xie, Li4Ti5O12–LiAlO2 composite as high performance anode material for lithium-ion battery, ACS Sustainable Chem. Eng., 4(2016), No. 4, p. 1994. doi: 10.1021/acssuschemeng.5b01271
    [29]
    G.Y. Ding, F.Q. Yan, Z. Zhu, et al., Mussel-inspired polydopamine-assisted uniform coating of Li+ conductive LiAlO2 on nickel-rich LiNi0.8Co0.1Mn0.1O2 for high-performance Li-ion batteries, Ceram. Int., 48(2022), No. 4, p. 5714. doi: 10.1016/j.ceramint.2021.11.118
    [30]
    Y. Wu, Y.F. Li, L.Y. Wang, et al., Enhancing the Li-ion storage performance of graphite anode material modified by LiAlO2, Electrochim. Acta, 235(2017), p. 463. doi: 10.1016/j.electacta.2017.03.129
    [31]
    H. Yang, N. Lun, Y.X. Qi, et al., Li2ZnTi3O8 coated with uniform lithium magnesium silicate layer revealing enhanced rate capability as anode material for Li-ion battery, Electrochim. Acta, 315(2019), p. 24. doi: 10.1016/j.electacta.2019.05.087
    [32]
    T.B. Lan, L. Chen, Y.B. Liu, W.F. Zhang, and M.D. Wei, Nanocomposite Li2ZnTi3O8/C with enhanced electrochemical performances for lithium-ion batteries, J. Electroanal. Chem., 794(2017), p. 120. doi: 10.1016/j.jelechem.2017.04.013
    [33]
    H.Q. Tang, L.X. Zan, and Z.Y. Tang, Predominant electronic conductivity of Li2ZnTi3O8 anode material prepared in nitrogen for rechargeable lithium-ion batteries, J. Electroanal. Chem., 823(2018), p. 269. doi: 10.1016/j.jelechem.2018.06.025
    [34]
    S.Q. Zhao, Z.W. Wang, Y.J. He, et al., A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide, Adv. Energy Mater., 9(2019), No. 26, art. No. 1901093.
    [35]
    Q.Y. Li, G.C. Yang, Y.Q. Chu, et al., Enhanced electrochemical performance of Ni-rich cathode material by N-doped LiAlO2 surface modification for lithium-ion batteries, Electrochim. Acta, 372(2021), art. No. 137882. doi: 10.1016/j.electacta.2021.137882
    [36]
    C.Y. An, C.H. Li, H.Q. Tang, T. Liu, and Z.Y. Tang, Binder-free flexible Li2ZnTi3O8@MWCNTs stereoscopic network as lightweight and superior rate performance anode for lithium-ion batteries, J. Alloys Compd., 816(2020), art. No. 152580. doi: 10.1016/j.jallcom.2019.152580
    [37]
    P.P. Peng, Y.R. Wu, X.Z. Li, et al., Toward superior lithium/sodium storage performance: Design and construction of novel TiO2-based anode materials, Rare Met., 40(2021), No. 11, p. 3049. doi: 10.1007/s12598-021-01742-z
    [38]
    C.X. Hou, J. Wang, W. Du, et al., One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage, J. Mater. Chem. A, 7(2019), No. 22, p. 13460. doi: 10.1039/C9TA03551F
    [39]
    T. Liu, H.Q. Tang, J.Y. Liu, et al., Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent, Electrochim. Acta, 259(2018), p. 28. doi: 10.1016/j.electacta.2017.10.139
    [40]
    G.S. Sim, P. Santhoshkumar, J.W. Park, et al., Chitosan-derived nitrogen-doped carbon on Li2ZnTi3O8/TiO2 composite as an anode material for lithium-ion batteries, Ceram. Int., 47(2021), No. 23, p. 33554. doi: 10.1016/j.ceramint.2021.08.264
    [41]
    S. Wang, Y.F. Bi, L.J. Wang, Z.H. Meng, and B.M. Luo, Mo-doped Li2ZnTi3O8@graphene as a high performance anode material for lithium-ion batteries, Electrochim. Acta, 301(2019), p. 319. doi: 10.1016/j.electacta.2019.01.168
    [42]
    Z.S. Hong, M.D. Wei, X.K. Ding, L.L. Jiang, and K.M. Wei, Li2ZnTi3O8 nanorods: A new anode material for lithium-ion battery, Electrochem. Commun., 12(2010), No. 6, p. 720. doi: 10.1016/j.elecom.2010.03.016
    [43]
    H.S. Ren, H.Y. Peng, T.Y. Xie, et al., Temperature stable microwave dielectric ceramics in Li2ZnTi3O8-based composite for LTCC applications, J. Mater. Sci. Mater. Electron., 29(2018), No. 15, p. 12978. doi: 10.1007/s10854-018-9418-0
    [44]
    T.T. Liu, N. Peng, X.K. Zhang, et al., Controllable defect engineering enhanced bond strength for stable electrochemical energy storage, Nano Energy, 79(2021), art. No. 105460. doi: 10.1016/j.nanoen.2020.105460
    [45]
    P. Fu, Z.Y. Li, Y. Pan, et al., Synthesis and characterization of Sm-doped Li2ZnTi3O8 as anode material for lithium-ion batteries, Mater. Chem. Phys., 277(2022), art. No. 125449. doi: 10.1016/j.matchemphys.2021.125449
    [46]
    T.F. Yi, J.Z. Wu, J. Yuan, Y.R. Zhu, and P.F. Wang, Rapid lithiation and delithiation property of V-doped Li2ZnTi3O8 as anode material for lithium-ion battery, ACS Sustainable Chem. Eng., 3(2015), No. 12, p. 3062. doi: 10.1021/acssuschemeng.5b00505
    [47]
    L.Y. Qiu, Y.R. Ji, Z.C. Lv, et al., Enhanced lithium storage property of porous Na2Li2Ti6O14@PEDOT spheres as anodes for lithium-ion batteries, Mater. Chem. Phys., 278(2022), art. No. 125700. doi: 10.1016/j.matchemphys.2022.125700
    [48]
    H. Chang, Y. Li, Z.K. Fang, J.P. Qu, Y.R. Zhu, and T.F. Yi, Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 28, p. 33102. doi: 10.1021/acsami.1c08373
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(767) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return