Bowei Zhang, Hezu Wang, Yan Su, Wenguang Yang, Xuelong Hao, Zequn Zhang, Fengqin Wang, Wei Xue,  and Junsheng Wu, Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-022-2533-1
Cite this article as:
Bowei Zhang, Hezu Wang, Yan Su, Wenguang Yang, Xuelong Hao, Zequn Zhang, Fengqin Wang, Wei Xue,  and Junsheng Wu, Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-022-2533-1
Research Article

Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery

+ Author Affiliations
  • Corresponding authors:

    Bowei Zhang    E-mail: bwzhang@ustb.edu.cn

    Junsheng Wu    E-mail: wujs@ustb.edu.cn

  • Received: 8 June 2022Revised: 18 July 2022Accepted: 4 August 2022Available online: 5 August 2022
  • Understanding the influence of purities on the electrochemical performance of pure aluminum (Al) in alkaline media for Al–air batteries is significant. Herein, we comprehensively investigate secondary phase precipitate (SPP)-induced localized corrosion of pure Al inNaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation. The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate. In alkaline media, Al–Fe SPPs exhibit more positive potentials than the substrate, thus aggravating localized galvanic corrosion as cathodic phases. Moreover, finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster, and the current density on the Al substrate gradually decreases with distance.
  • loading
  • [1]
    K. Huang, D.D. Peng, Z.X. Yao, et al., Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCCFeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER, Chem. Eng. J., 425(2021), art. No. 131533. doi: 10.1016/j.cej.2021.131533
    [2]
    S.M. Han, C.H. He, Q.B. Yun, et al., Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells, Coord. Chem. Rev., 445(2021), art. No. 214085. doi: 10.1016/j.ccr.2021.214085
    [3]
    S. Zhang, Q. Fan, R. Xia, and T.J. Meyer, CO2 reduction: From homogeneous to heterogeneous electrocatalysis, Acc. Chem. Res., 53(2020), No. 1, p. 255. doi: 10.1021/acs.accounts.9b00496
    [4]
    X.D. Li, S.M. Wang, L. Li, Y.F. Sun, and Y. Xie, Progress and perspective for in situ studies of CO2 reduction, J. Am. Chem. Soc., 142(2020), No. 21, p. 9567.
    [5]
    H.B. Yang, L. Wu, B. Jiang, et al., Discharge properties of Mg–Sn–Y alloys as anodes for Mg–air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
    [6]
    S.G. Wu, S.Y. Hu, Q. Zhang, et al., Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum–air battery, Energy Storage Mater., 31(2020), p. 310. doi: 10.1016/j.ensm.2020.06.024
    [7]
    S.G. Wu, Q. Zhang, D. Sun, et al., Understanding the synergisticeffect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum–air battery, Chem. Eng. J., 383(2020), art. No. 123162. doi: 10.1016/j.cej.2019.123162
    [8]
    Y.S. Liu, L.S. Yang, B. Xie, et al., Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al–air battery, Chem. Eng. J., 381(2020), art. No. 122681. doi: 10.1016/j.cej.2019.122681
    [9]
    S.J. Liu, X.H. Wan, Y. Sun, et al., Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2212. doi: 10.1007/s12613-022-2498-0
    [10]
    G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al–air battery, Rare Met., 40(2021), No. 12, p. 3501. doi: 10.1007/s12598-020-01687-9
    [11]
    R. Mori, Recent developments for aluminum–air batteries, Electrochem. Energy Rev., 3(2020), No. 2, p. 344. doi: 10.1007/s41918-020-00065-4
    [12]
    R. Buckingham, T. Asset, and P. Atanassov, Aluminum–air batteries: A review of alloys, electrolytes and design, J. Power Sources, 498(2021), art. No. 229762. doi: 10.1016/j.jpowsour.2021.229762
    [13]
    Q.F. Li and N.J. Bjerrum, Aluminum as anode for energy storage and conversion: A review, J. Power Sources, 110(2002), No. 1, p. 1. doi: 10.1016/S0378-7753(01)01014-X
    [14]
    M.L. Doche, F. Novel-Cattin, R. Durand, and J.J. Rameau, Characterization of different grades of aluminum anodes for aluminum/air batteries, J. Power Sources, 65(1997), No. 1-2, p. 197. doi: 10.1016/S0378-7753(97)02473-7
    [15]
    M.L. Doche, J.J. Rameau, R. Durand, and F. Novel-Cattin, Electrochemical behaviour of aluminium in concentratedNaOH solutions, Corros. Sci., 41(1999), No. 4, p. 805. doi: 10.1016/S0010-938X(98)00107-3
    [16]
    Y.J. Cho, I.J. Park, H.J. Lee, and J.G. Kim, Aluminum anode for aluminum–air battery–Part I: Influence of aluminum purity, J. Power Sources, 277(2015), p. 370. doi: 10.1016/j.jpowsour.2014.12.026
    [17]
    Z.X. Yu, S.X. Hao, and Q.S. Fu, Electrochemical behaviors of different grades of pure aluminum in alkaline solution, Adv. Mater. Res., 652-654(2013), p. 853. doi: 10.4028/www.scientific.net/AMR.652-654.853
    [18]
    Y.R. Liu, Q.L. Pan, H. Li, Z.Q. Huang, J. Ye, and M.J. Li, Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment, J. Alloys Compd., 792(2019), p. 32. doi: 10.1016/j.jallcom.2019.03.324
    [19]
    P. Xie, S.Y. Chen, K.H. Chen, et al., Enhancing the stress corrosion cracking resistance of a low-Cu containing Al–Zn–Mg–Cu aluminum alloy by step-quench and aging heat treatment, Corros. Sci., 161(2019), art. No. 108184. doi: 10.1016/j.corsci.2019.108184
    [20]
    S.Q. Liu, X. Wang, Y.R. Tao, X. Han, and C.X. Cui, Enhanced corrosion resistance of 5083 aluminum alloy by refining with nano-CeB6/Al inoculant, Appl. Surf. Sci., 484(2019), p. 403. doi: 10.1016/j.apsusc.2019.03.283
    [21]
    W.J. Liang, Q.L. Pan, Y.B. He, Y.C. Li, Y.C. Zhou, and C.G. Lu, Effect of aging on the mechanical properties and corrosion susceptibility of an Al–Cu–Li–Zr alloy containing Sc, Rare Met., 27(2008), No. 2, p. 146. doi: 10.1016/S1001-0521(08)60105-9
    [22]
    S.S. Singh, J.J. Williams, T.J. Stannard, X.H. Xiao, F.D. Carlo, and N. Chawla, Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography, Corros. Sci., 104(2016), p. 330. doi: 10.1016/j.corsci.2015.12.027
    [23]
    A. Chemin, D. Marques, L. Bisanha, A.D.J. Motheo, W.W. Bose Filho, and C.O.F. Ruchert, Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys, Mater. Des., 53(2014), p. 118. doi: 10.1016/j.matdes.2013.07.003
    [24]
    A.C. Vieira, A.M. Pinto, L.A. Rocha, and S. Mischler, Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al–Si–Cu–Mg alloys in 0.05 M NaCl, Electrochim. Acta, 56(2011), No. 11, p. 3821. doi: 10.1016/j.electacta.2011.02.044
    [25]
    H.W. Shi, Z.H. Tian, T.H. Hu, et al., Simulating corrosion of Al2CuMg phase by measuring ionic currents, chloride concentration and pH, Corros. Sci., 88(2014), p. 178. doi: 10.1016/j.corsci.2014.07.021
    [26]
    H.W. Shi, E.H. Han, F.C. Liu, T. Wei, Z.W. Zhu, and D.K. Xu, Study of corrosion inhibition of coupled Al2Cu–Al and Al3Fe–Al by cerium cinnamate using scanning vibrating electrode technique and scanning ion-selective electrode technique, Corros. Sci., 98(2015), p. 150. doi: 10.1016/j.corsci.2015.05.019
    [27]
    A. Kosari, F. Tichelaar, P. Visser, H. Zandbergen, H. Terryn, and J.M.C. Mol, Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys, Corros. Sci., 177(2020), art. No. 108947. doi: 10.1016/j.corsci.2020.108947
    [28]
    S.S. Wang, I.W. Huang, L. Yang, et al., Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys, J. Electrochem. Soc., 162(2015), No. 4, p. C150. doi: 10.1149/2.0301504jes
    [29]
    Y.K. Zhu, K. Sun, and G.S. Frankel, Intermetallic phases in aluminum alloys and their roles in localized corrosion, J. Electrochem. Soc., 165(2018), No. 11, p. C807. doi: 10.1149/2.0931811jes
    [30]
    G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, The discharge and corrosion behavior of Al anodes with different purity in alkaline solution, Int. J. Electrochem. Sci., 15(2020), p. 6892. doi: 10.20964/2020.07.59
    [31]
    K. Törne, A. Örnberg, and J. Weissenrieder, Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments, Acta Biomater., 48(2017), p. 541. doi: 10.1016/j.actbio.2016.10.030
    [32]
    R. Ly, K.T. Hartwig, and H. Castaneda, Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061, Corros. Sci., 139(2018), p. 47. doi: 10.1016/j.corsci.2018.04.023
    [33]
    C. Örnek and D.L. Engelberg, SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corros. Sci., 99(2015), p. 164. doi: 10.1016/j.corsci.2015.06.035
    [34]
    S.K. Kairy, P.A. Rometsch, C.H.J. Davies, and N. Birbilis, On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series aluminum alloys, Corrosion, 73(2017), No. 1, p. 87. doi: 10.5006/2249
    [35]
    J.S. Wu, D.D. Peng, Y.T. He, et al., In situ formation of decavanadate-intercalated layered double hydroxide films on AA2024 and their anti-corrosive properties when combined with hybrid sol gel films, Materials (Basel), 10(2017), No. 4, art. No. 426. doi: 10.3390/ma10040426
    [36]
    X.Q. Li, L.W. Wang, L. Fan, Z.Y. Cui, and M.X. Sun, Effect of temperature and dissolved oxygen on the passivation behavior of Ti–6Al–3Nb–2Zr–1Mo alloy in artificial seawater, J. Mater. Res. Technol., 17(2022), p. 374. doi: 10.1016/j.jmrt.2022.01.018
    [37]
    Z.P. Wang, Y. Wang, B.W. Zhang, et al., Passivation behavior of 316L stainless steel in artificial seawater: Effects of pH and dissolved oxygen, Anti-Corros. Methods Mater., 68(2021), No. 2, p. 122. doi: 10.1108/ACMM-09-2020-2367
    [38]
    M.T. Wang, L.W. Wang, K. Zhao, Y.X. Liu, and Z.Y. Cui, Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates, Mater. Today Commun., 31(2022), art. No. 103567. doi: 10.1016/j.mtcomm.2022.103567
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(933) PDF Downloads(39) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return