Cite this article as: |
Guomin Li, Xiaojie Xue, Lutao Mao, Yake Wang, Lingxiao Li, Guizhen Wang, Kewei Zhang, Rong Zhang, Yuexiang Wang, and Liping Liang, Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 591-599. https://doi.org/10.1007/s12613-022-2534-0 |
Guomin Li E-mail: ligm@tyust.edu.cn
Guizhen Wang E-mail: wangguizhen0@hotmail.com
Supplementary InformationsIJM-05-2022-0474.docx |
[1] |
L.H. Wu, X. Liu, G.P. Wan, et al., Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers, Chem. Eng. J., 448(2022), art. No. 137600. doi: 10.1016/j.cej.2022.137600
|
[2] |
H.M. Kuo, T.F. Hsui, Y.S. Tuo, and C.L. Yuan, Microwave adsorption of core–shell structured Sr(MnTi)xFe12−2xO19/PANI composites, J. Mater. Sci., 47(2012), No. 5, p. 2264. doi: 10.1007/s10853-011-6038-y
|
[3] |
C.X. Wang, B.B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites Part B, 205(2021), art. No. 108529. doi: 10.1016/j.compositesb.2020.108529
|
[4] |
M. Ma, Q. Zheng, Y.H. Zhu, L. Li, and M.S. Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption, J. Materiomics, 8(2022), No. 3, p. 577. doi: 10.1016/j.jmat.2021.12.003
|
[5] |
Z.C. Wu, C. Jin, Z.Q. Yang, and R.C. Che, Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance, Carbon, 189(2022), p. 530. doi: 10.1016/j.carbon.2021.12.073
|
[6] |
M.F. Zhou, X.F. Xu, G.P. Wan, P.P. Mou, S.J. Teng, and G.Z. Wang, Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers, Nano Res., 15(2022), No. 10, p. 8677. doi: 10.1007/s12274-022-4521-1
|
[7] |
X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and X.M. Wu, Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption, Carbon, 179(2021), p. 566. doi: 10.1016/j.carbon.2021.04.050
|
[8] |
R.R. Cheng, Y. Wang, X.C. Di, et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 224. doi: 10.1016/j.jcis.2021.11.197
|
[9] |
H.R. Geng, X. Zhang, W.H. Xie, et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 33. doi: 10.1016/j.jcis.2021.11.192
|
[10] |
X.L. Chen, W. Wang, T. Shi, G.L. Wu, and Y. Lu, One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles, Carbon, 163(2020), p. 202. doi: 10.1016/j.carbon.2020.03.005
|
[11] |
P.B. Liu, Y. Wang, G.Z. Zhang, et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction, Adv. Funct. Mater., 32(2022), No. 33, art. No. 2202588. doi: 10.1002/adfm.202202588
|
[12] |
Y. Fan, J.Y. Wang, X.M. Zhang, et al., Coal-based carbon/FeCo magnetic composites with layered stripes as novel light-weight microwave absorber, Diam. Relat. Mater., 120(2021), art. No. 108685. doi: 10.1016/j.diamond.2021.108685
|
[13] |
B.C. Wang, Y. Zhang, Y. Yang, et al., Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber, J. Alloys Compd., 838(2020), art. No. 155586. doi: 10.1016/j.jallcom.2020.155586
|
[14] |
R.W. Shu, Y. Wu, X.H. Li, N.N. Li, and J.J. Shi, Fabrication of bimetallic metal–organic frameworks derived cobalt iron alloy@carbon–carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers, J. Colloid Interface Sci., 613(2022), p. 477. doi: 10.1016/j.jcis.2022.01.063
|
[15] |
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal–organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
|
[16] |
L. Wu, A. Mendoza-Garcia, Q. Li, and S.H. Sun, Organic phase syntheses of magnetic nanoparticles and their applications, Chem. Rev., 116(2016), No. 18, p. 10473. doi: 10.1021/acs.chemrev.5b00687
|
[17] |
S.Q. Gu, Z.Q. Xu, Y.G. Ren, Z.F. Chai, and Y.X. Zhang, Effect of lignite semi-coke on lignite microwave upgrade and its slurryability, Energy Sources Part A, 2019. DOI: 10.1080/15567036.2019.1673852
|
[18] |
P.Q. Wang, C.A. Wang, C.W. Wang, et al., Synergistic effects in rapid co-pyrolysis of semi-coke and coal at high temperature, Fuel, 282(2020), art. No. 118795. doi: 10.1016/j.fuel.2020.118795
|
[19] |
B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Synthesis and microwave absorption properties of Fe-loaded fly ash-based ceramic composites, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3307. doi: 10.1021/acsaelm.0c00630
|
[20] |
B.S. Zhu, Y.Y. Li, Y.M. Tian, et al., Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution, Colloids Surf. A, 627(2021), art. No. 127127. doi: 10.1016/j.colsurfa.2021.127127
|
[21] |
G.M. Li, L.T. Mao, B.S. Zhu, et al., Novel ceramic-based microwave absorbents derived from gangue, J. Mater. Chem. C, 8(2020), No. 40, p. 14238. doi: 10.1039/D0TC03633A
|
[22] |
L. Wang, B. Wen, H.B. Yang, Y. Qiu, and N.R. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber, Composites Part A, 135(2020), art. No. 105958. doi: 10.1016/j.compositesa.2020.105958
|
[23] |
S.F. Yuan, X. Qu, R. Zhang, and J.C. Bi, Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal, Fuel, 147(2015), p. 133. doi: 10.1016/j.fuel.2015.01.004
|
[24] |
S.F. Yuan, N. Zhang, X. Qu, J.C. Bi, Q.E. Cao, and J.L. Wang, Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal, Fuel, 200(2017), p. 153. doi: 10.1016/j.fuel.2017.03.066
|
[25] |
D.D. Zhu, Y. Cheng, B. Xue, Y.S. Jiang, and C.D. Wei, Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid, Silicon, 12(2020), No. 7, p. 1547. doi: 10.1007/s12633-019-00250-1
|
[26] |
N.J. Wagner, R.H. Matjie, J.H. Slaghuis, and J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel, 87(2008), No. 6, p. 683. doi: 10.1016/j.fuel.2007.05.022
|
[27] |
F.Y. Wang, Y.Q. Sun, D.R. Li, et al., Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning, Carbon, 134(2018), p. 264. doi: 10.1016/j.carbon.2018.03.081
|
[28] |
Y. Yuan, S.C. Wei, Y. Liang, et al., Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties, J. Alloys Compd., 867(2021), art. No. 159040. doi: 10.1016/j.jallcom.2021.159040
|
[29] |
Z.L. Zhang, Y.Y. Lv, X.Q. Chen, et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption, J. Magn. Magn. Mater., 487(2019), art. No. 165334. doi: 10.1016/j.jmmm.2019.165334
|
[30] |
F. Mederos-Henry, J. Mahin, B.P. Pichon, et al., Highly efficient wideband microwave absorbers based on zero-valent Fe@γ-Fe2O3 and Fe/co/Ni carbon-protected alloy nanoparticles supported on reduced graphene oxide, Nanomaterials, 9(2019), No. 9, art. No. 1196. doi: 10.3390/nano9091196
|
[31] |
Y.C. Du, W.W. Liu, R. Qiang, et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites, ACS Appl. Mater. Interfaces, 6(2014), No. 15, p. 12997. doi: 10.1021/am502910d
|
[32] |
L.L. Deng, J.B. Zhang, and R.W. Shu, Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers, J. Colloid Interface Sci., 602(2021), p. 282. doi: 10.1016/j.jcis.2021.06.029
|
[33] |
R. C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401. doi: 10.1002/adma.200306460
|
[34] |
M.Q. Ning, J.B. Li, B.Y. Kuang, et al., One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption, Appl. Surf. Sci., 447(2018), p. 244. doi: 10.1016/j.apsusc.2018.03.242
|
[35] |
F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
|
[36] |
H. Huang, Y. Gao, C.F. Fang, et al., Spray granulation of Fe and C nanoparticles and their impedance match for microwave absorption, J. Mater. Sci. Technol., 34(2018), No. 3, p. 496. doi: 10.1016/j.jmst.2017.01.010
|
[37] |
R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426. doi: 10.1039/C5TA01457C
|
[38] |
G.H. He, Y.P. Duan, and H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon, Nano-Micro Lett., 12(2020), No. 1, art. No. 57. doi: 10.1007/s40820-020-0388-4
|
[39] |
Y. Liu, J. Lai, and J.F. Shi, Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites, New Carbon Mater., 35(2020), No. 4, p. 428. doi: 10.1016/S1872-5805(20)60500-5
|
[40] |
Y.R. Feng, X. Guo, H.Y. Gong, Y.J. Zhang, and X. Lin, Enhanced electromagnetic microwave absorption of Fe/C/SiCN composite ceramics targeting in integrated structure and function, Ceram. Int., 47(2021), No. 3, p. 3842. doi: 10.1016/j.ceramint.2020.09.244
|
[41] |
P.G. Yang, M. Yu, J. Fu, and L.R. Wang, Synthesis and microwave absorption properties of hierarchical Fe micro-sphere assembly by nano-plates, J. Alloys Compd., 721(2017), p. 449. doi: 10.1016/j.jallcom.2017.05.296
|
[42] |
X.F. Zhang, Y. Rao, J.J. Guo, and G.W. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon, 96(2016), p. 972. doi: 10.1016/j.carbon.2015.09.087
|
[43] |
B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Construction of Ni-loaded ceramic composites for efficient microwave absorption, Appl. Surf. Sci., 538(2021), art. No. 148018. doi: 10.1016/j.apsusc.2020.148018
|
[44] |
D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, and M. Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range, Carbon, 80(2014), p. 103. doi: 10.1016/j.carbon.2014.08.044
|
[45] |
F. Gao, Y.Y. Li, L.T. Mao, et al., Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue, Mater. Lett., 308(2022), art. No. 131168.
|
[46] |
D.W. Liu, Y.C. Du, P. Xu, et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption, J. Mater. Chem. C, 7(2019), No. 17, p. 5037. doi: 10.1039/C9TC00771G
|
[47] |
L.L. Yan, J. Liu, S.C. Zhao, et al., Coaxial multi-interface hollow Ni–Al2O3–ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions, Nano Res., 10(2017), No. 5, p. 1595. doi: 10.1007/s12274-016-1302-8
|
[48] |
F. Wang, W.H. Gu, J.B. Chen, et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption, J. Mater. Sci. Technol., 105(2022), p. 92. doi: 10.1016/j.jmst.2021.06.058
|
[49] |
L. Wang, B. Wen, X.Y. Bai, C. Liu, and H.B. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber, J. Colloid Interface Sci., 540(2019), p. 30. doi: 10.1016/j.jcis.2018.12.111
|
[50] |
X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538. doi: 10.1016/j.cej.2019.123538
|
[51] |
K. Sooklal, B.S. Cullum, S.M. Angel, and C.J. Murphy, Photophysical properties of ZnS nanoclusters with spatially localized Mn2+, J. Phys. Chem., 100(1996), No. 11, p. 4551. doi: 10.1021/jp952377a
|
[52] |
R.X. Zhang, L. Wang, C.Y. Xu, et al., Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency, Nano Res., 15(2022), No. 7, p. 6743. doi: 10.1007/s12274-022-4401-8
|
[53] |
G.H. Pan, J. Zhu, S.L. Ma, G.B. Sun, and X.J. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene, ACS Appl. Mater. Interfaces, 5(2013), No. 23, p. 12716. doi: 10.1021/am404117v
|
[54] |
S. Xie, X.N. Guo, G.Q. Jin, and X.Y. Guo, Carbon coated Co–SiC nanocomposite with high-performance microwave absorption, Phys. Chem. Chem. Phys., 15(2013), No. 38, p. 16104. doi: 10.1039/c3cp52735b
|
[55] |
Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4–BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598. doi: 10.1016/j.compositesb.2019.01.008
|
[56] |
F. Wu, Q. Li, Z.H. Liu, et al., Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties, Carbon, 182(2021), p. 484. doi: 10.1016/j.carbon.2021.06.044
|
[57] |
Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312. doi: 10.1016/j.cej.2019.04.153
|
[58] |
Z.J. Wang, L.N. Wu, J.G. Zhou, Z.H. Jiang, and B.Z. Shen, Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption, Nanoscale, 6(2014), No. 21, p. 12298. doi: 10.1039/C4NR03040K
|