Shuya Zhang, Yanchun Xue, Yutang Zhang, Chengxing Zhu, Xingmei Guo, Fu Cao, Xiangjun Zheng, Qinghong Kong, Junhao Zhang, and Tongxiang Fan, KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 601-610. https://doi.org/10.1007/s12613-022-2539-8
Cite this article as:
Shuya Zhang, Yanchun Xue, Yutang Zhang, Chengxing Zhu, Xingmei Guo, Fu Cao, Xiangjun Zheng, Qinghong Kong, Junhao Zhang, and Tongxiang Fan, KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 601-610. https://doi.org/10.1007/s12613-022-2539-8
Research Article

KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage

+ Author Affiliations
  • Corresponding authors:

    Xingmei Guo    E-mail: guoxm@just.edu.cn

    Tongxiang Fan    E-mail: txfan@sjtu.edu.cn

  • Received: 23 May 2022Revised: 17 August 2022Accepted: 19 August 2022Available online: 21 August 2022
  • To solve low efficiency, environmental pollution, and toxicity for synthesizing zeolitic imidazolate frameworks (ZIFs) in organic solvents, a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons, which are used as precursors to prepare bimetallic selenide and N-doped carbon (NC) composites. Among them, Fe–Co–Se/NC retains the three-dimensional (3D) polyhedrons with mesoporous structure, and Fe–Co–Se nanoparticles are uniform in size and evenly distributed. When assessed as anode material for lithium-ion batteries, Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 mAh·g−1 at 1.0 A·g−1, and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 mAh·g−1 after 550 cycles. It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites, the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte, and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.
  • loading
  • [1]
    Z.X. Tang, H.Q. Ye, X. Ma, and K. Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1618. doi: 10.1007/s12613-021-2296-0
    [2]
    J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
    [3]
    W. Liu, J.J. Yuan, Y.C. Hao, et al., Heterogeneous structured MoSe2–MoO3 quantum dots with enhanced sodium/potassium storage, J. Mater. Chem. A, 8(2020), No. 44, p. 23395. doi: 10.1039/D0TA08674F
    [4]
    W. Wang, P.H. Li, H. Zheng, et al., Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries, Small, 13(2017), No. 46, art. No. 1702228. doi: 10.1002/smll.201702228
    [5]
    Y. Tian, Z.H. Sun, Y. Zhao, T.Z. Tan, H. Liu, and Z.H. Chen, One-dimensional Sb2Se3 nanorods synthesized through a simple polyol process for high-performance lithium-ion batteries, J. Nanomater., 2018(2018), art. No. 4273945.
    [6]
    J.H. Jeong, D.W. Jung, and E.S. Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, J. Alloys Compd., 613(2014), p. 42. doi: 10.1016/j.jallcom.2014.06.017
    [7]
    N. Yu, L.X. Zou, C. Li, and K. Guo, In-situ growth of binder-free hierarchical carbon coated CoSe2 as a high performance lithium ion battery anode, Appl. Surf. Sci., 483(2019), p. 85. doi: 10.1016/j.apsusc.2019.03.258
    [8]
    Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
    [9]
    W.W. Sun, C. Cai, X.X. Tang, L.P. Lv, and Y. Wang, Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries, Chem. Eng. J., 351(2018), p. 169. doi: 10.1016/j.cej.2018.06.093
    [10]
    J. Shi, X.M. Guo, S.J. Liu, et al., An altered nanoemulsion assembly strategy for in situ synthesis of Co2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries, Compos. B Eng., 231(2022), art. No. 109589. doi: 10.1016/j.compositesb.2021.109589
    [11]
    Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
    [12]
    M. Huang, K. Mi, J.H. Zhang, et al., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266. doi: 10.1039/C6TA09030C
    [13]
    Y. Hyeon, J. Lee, H. Qutaish, S.A. Han, et al., Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures, Energy Storage Mater., 33(2020), p. 95. doi: 10.1016/j.ensm.2020.07.015
    [14]
    D. Yarmolich, Y. Odarchenko, C. Murphy, et al., Novel binder-free carbon anode for high capacity Li-ion batteries, Nano Energy, 83(2021), art. No. 105816. doi: 10.1016/j.nanoen.2021.105816
    [15]
    W.F. Jiang, J.P. Sun, K.B. Lu, et al., 2D coordination polymer-derived CoSe2–NiSe2/CN nanosheets: The dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction, Dalton Trans., 50(2021), No. 28, p. 9934. doi: 10.1039/D1DT01487K
    [16]
    I. Khan, N. Baig, S. Ali, M. Usman, S.A. Khan, and K. Saeed, Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective, Energy Storage Mater., 35(2021), p. 443. doi: 10.1016/j.ensm.2020.11.033
    [17]
    N.X. Shi, B.J. Xi, M. Huang, et al., Hierarchical octahedra constructed by Cu2S/MoS2 $ \subset $Carbon framework with enhanced sodium storage, Small, 16(2020), No. 23, art. No. 2000952. doi: 10.1002/smll.202000952
    [18]
    S.H. Wang, J. Teng, Y.Y. Xie, et al., Embedding CoO nanoparticles in a yolk–shell N-doped porous carbon support for ultrahigh and stable lithium storage, J. Mater. Chem. A, 7(2019), No. 8, p. 4036. doi: 10.1039/C8TA11007G
    [19]
    L.T. Wang, S.Q. Li, X.D. Zhang, and Y.M. Huang, CoSe2 hollow microspheres with superior oxidase-like activity for ultrasensitive colorimetric biosensing, Talanta, 216(2020), art. No. 121009. doi: 10.1016/j.talanta.2020.121009
    [20]
    X.J. Wei, Y.B. Zhang, B.K. Zhang, et al, Yolk–shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage, Nano Energy, 64(2019), art. No. 103899. doi: 10.1016/j.nanoen.2019.103899
    [21]
    M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
    [22]
    X.M. Guo, S.J. Liu, X.H. Wan, et al, Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett., 22(2022), No. 12, p. 4879. doi: 10.1021/acs.nanolett.2c01318
    [23]
    X.M. Guo, W. Zhang, J. Shi, et al., A channel-confined strategy for synthesizing CoN–CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries, Nano Res., 15(2022), No. 3, p. 2092. doi: 10.1007/s12274-021-3835-8
    [24]
    J.Y. Kim, J.W. Lee, J.H. Yun, et al, Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910538. doi: 10.1002/adfm.201910538
    [25]
    P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735. doi: 10.1007/s12613-021-2272-8
    [26]
    X.H. Wan, X.M. Guo, M.T. Duan, et al., Ultrafine CoO nanoparticles and Co–N–C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries, Electrochim. Acta, 394(2021), art. No. 139135. doi: 10.1016/j.electacta.2021.139135
    [27]
    D. Zhou, W.L. Song, X.G. Li, L.Z. Fan, and Y.H. Deng, Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries, J. Alloys Compd., 699(2017), p. 730. doi: 10.1016/j.jallcom.2016.12.426
    [28]
    J. Yang, Y.H. Lin, B.S. Guo, et al., Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
    [29]
    Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. Xia, Heteroatom doping: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927. doi: 10.1002/aenm.202000927
    [30]
    M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
    [31]
    F. Liu, S.Y. Liu, J.S. Meng, et al., Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage, Nano Energy, 73(2020), art. No. 104758. doi: 10.1016/j.nanoen.2020.104758
    [32]
    Z.P. Zhao, S.H. Li, C.Q. Li, Z.Y. Liu, and D. Li, Hollow CoS2@C nanocubes for high-performance sodium storage, Appl. Surf. Sci., 519(2020), art. No. 146268. doi: 10.1016/j.apsusc.2020.146268
    [33]
    Y. Zhao, X.L. Shi, S.J.H. Ong, et al., Enhancing the charge transportation ability of yolk–shell structure for high-rate sodium and potassium storage, ACS Nano, 14(2020), No. 4, p. 4463. doi: 10.1021/acsnano.9b10045
    [34]
    M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
    [35]
    N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876. doi: 10.1007/s12613-022-2422-7
    [36]
    J.B. Li, D. Yan, T. Lu, Y.F. Yao, and L.K. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries, Chem. Eng. J., 325(2017), p. 14. doi: 10.1016/j.cej.2017.05.046
    [37]
    X.Y. Meng, S.L. Deng, L. Feng, et al., Cd-doped FeSe nanoparticles embedded in N-doped carbon: A potential anode material for lithium storage, New J. Chem., 45(2021), No. 48, p. 22668. doi: 10.1039/D1NJ04642J
    [38]
    J. Jin, Y. Zheng, L.B. Kong, N. Srikanth, Q.Y. Yan, and K. Zhou, Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage, J. Mater. Chem. A, 6(2018), No. 32, p. 15710. doi: 10.1039/C8TA04425B
    [39]
    W. Liu, M. Shao, W.Q. Zhou, et al., Hollow Ni–CoSe2 embedded in nitrogen-doped carbon nanocomposites derived from metal-organic frameworks for high-rate anodes, ACS Appl. Mater. Interfaces, 10(2018), No. 45, p. 38845. doi: 10.1021/acsami.8b08861
    [40]
    Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
    [41]
    S.X. Lu, W.B. Luo, Z.S. Chao, Y.H. Liu, Z. Zhang, and J.C. Fan, New type of SnSe/CoSe@C anode for lithium-ion batteries, Energy Fuels, 36(2022), No. 4, p. 2260. doi: 10.1021/acs.energyfuels.2c00062
    [42]
    J.L. Chen, X.M. Guo, M.Y. Gao, et al., Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun., 57(2021), No. 81, p. 10580. doi: 10.1039/D1CC04172J
    [43]
    A.M. Zardkhoshoui and S.S.H. Davarani, Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors, Chem. Eng. J., 402(2020), art. No. 126241. doi: 10.1016/j.cej.2020.126241
    [44]
    L.F. Guo, S.Y. Zhang, J. Xie, et al., Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
    [45]
    M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(673) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return