Xianglong Chen, Yudong Gong, Xiu Li, Feng Zhan, Xinhua Liu,  and Jianmin Ma, Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 1-13. https://doi.org/10.1007/s12613-022-2541-1
Cite this article as:
Xianglong Chen, Yudong Gong, Xiu Li, Feng Zhan, Xinhua Liu,  and Jianmin Ma, Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 1-13. https://doi.org/10.1007/s12613-022-2541-1
Invited Review

Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries

+ Author Affiliations
  • The olivine-type lithium iron phosphate (LiFePO4) cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost, environmental friendliness, and high safety. At present, LiFePO4/C secondary batteries are widely used for electronic products, automotive power batteries, and other occasion-related applications with good thermal stability, stable cycle performance, and low room-temperature self-discharge rate. However, LiFePO4-based battery applications are seriously limited when they are operated in a cold climate. This outcome is due to a considerable decrease in Li+ transport capabilities within the electrode, particularly leading to a dramatic decrease in the electrochemical capacity and power performance of the electrolyte. Therefore, the design of low-temperature electrolytes is important for the further commercial application of LiFePO4 batteries. This paper reviews the key factors for the poor low-temperature performance of LiFePO4-based batteries and the research progress of low-temperature electrolytes. Special attention is paid to electrolyte components, including lithium salts, cosolvents, additives, and the development of new electrolytes. The factors affecting the anode are also analyzed. Finally, according to the current research progress, some viewpoints are summarized to provide suitable modification methods and research suggestions for improving the practicability of LiFePO4/C commercial batteries at low temperatures in the future.
  • loading
  • [1]
    P. Cai, K.Y. Zou, X.L. Deng, B.W. Wang, M. Zheng, L.H. Li, H.S. Hou, G.Q. Zou, and X.B. Ji, Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments, Adv. Energy Mater., 11(2021), No. 16, art. No. 2003804. doi: 10.1002/aenm.202003804
    [2]
    F. Li, J.D. Liu, J. He, Y.Y. Hou, H.P. Wang, D.X. Wu, J.D. Huang, and J.M. Ma, Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis, Angew. Chem. Int. Ed., 61(2022), No. 27, art. No. e202205091.
    [3]
    L. Yang, W.T. Deng, W. Xu, Y. Tian, A.N. Wang, B.W. Wang, G.Q. Zou, H.S. Hou, W.N. Deng, and X.B. Ji, Olivine LiMnxFe1–xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances, J. Mater. Chem. A, 9(2021), No. 25, p. 14214. doi: 10.1039/D1TA01526E
    [4]
    C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
    [5]
    G.L. Zhu, K.C. Wen, W.Q. Lv, X.Z. Zhou, Y.C. Liang, F. Yang, Z.L. Chen, M.D. Zou, J.C. Li, Y.Q. Zhang, and W.D. He, Materials insights into low-temperature performances of lithium-ion batteries, J. Power Sources, 300(2015), p. 29. doi: 10.1016/j.jpowsour.2015.09.056
    [6]
    C.C. Zhou, Z. Su, X.L. Gao, R. Cao, S.C. Yang, and X.H. Liu, Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design, Rare Met., 41(2022), No. 1, p. 14. doi: 10.1007/s12598-021-01785-2
    [7]
    S.C. Yang, R. He, Z.J. Zhang, Y.G. Cao, X.L. Gao, and X.H. Liu, Chain: Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management, Matter, 3(2020), No. 1, p. 27. doi: 10.1016/j.matt.2020.04.015
    [8]
    B.B. Wei, Y.B. Wu, F.Y. Yu, and Y.N. Zhou, Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 474. doi: 10.1007/s12613-016-1258-4
    [9]
    Y.H. Wang, R. Mei, and X.M. Yang, Enhanced electrochemical properties of LiFePO4/C synthesized with two kinds of carbon sources, PEG-4000 (organic) and Super p (inorganic), Ceram. Int., 40(2014), No. 6, p. 8439. doi: 10.1016/j.ceramint.2014.01.054
    [10]
    C.M. Burba and R. Frech, Local structure in the Li-ion battery cathode material Lix(MnyFe1−y)PO4 for 0<x≤1 and y = 0.0, 0.5, and 1.0, J. Power Sources, 172(2007), No. 2, p. 870. doi: 10.1016/j.jpowsour.2007.05.075
    [11]
    S.Q. Zhu, Improving methods for better performance of commercial LiFePO4/C batteries, Int. J. Electrochem. Sci., 16(2021), art. No. 210564.
    [12]
    B.F. Zhang, Y.L. Xu, J. Wang, X.N. Ma, W.Q. Hou, and X. Xue, Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology, Electrochim. Acta, 368(2021), art. No. 137575. doi: 10.1016/j.electacta.2020.137575
    [13]
    Y.J. Lv, B. Huang, J.X. Tan, S.Q. Jiang, S.F. Zhang, and Y.X. Wen, Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F co-doping, Mater. Lett., 229(2018), p. 349. doi: 10.1016/j.matlet.2018.07.049
    [14]
    D. Xie, G.L. Cai, Z.C. Liu, R.S. Guo, D.D. Sun, C. Zhang, Y.Z. Wan, J.H. Peng, and H. Jiang, The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure, Electrochim. Acta, 217(2016), p. 62. doi: 10.1016/j.electacta.2016.09.058
    [15]
    X.X. Gu, S. Qiao, X.L. Ren, X.Y. Liu, Y.Z. He, X.T. Liu, and T.F. Liu, Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries, Rare Met., 40(2021), No. 4, p. 828. doi: 10.1007/s12598-020-01669-x
    [16]
    J.Y. Liu, X.R. Lin, T.L. Han, X.X. Li, C.P. Gu, and J.J. Li, A novel litchi-like LiFePO4 sphere/reduced graphene oxide composite Li-ion battery cathode with high capacity, good rate-performance and low-temperature property, Appl. Surf. Sci., 459(2018), p. 233. doi: 10.1016/j.apsusc.2018.07.199
    [17]
    B. Yao, Z.J. Ding, J.X. Zhang, X.Y. Feng, and L.W. Yin, Encapsulation of LiFePO4 by in-situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium ion batteries, J. Solid State Chem., 216(2014), p. 9. doi: 10.1016/j.jssc.2014.04.023
    [18]
    X. Kang, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114(2014), No. 23, p. 11503. doi: 10.1021/cr500003w
    [19]
    X.L. Gao, X.H. Liu, W.L. Xie, L.S. Zhang, and S.C. Yang, Multiscale observation of Li plating for lithium-ion batteries, Rare Met., 40(2021), No. 11, p. 3038. doi: 10.1007/s12598-021-01730-3
    [20]
    X.Z. Liao, Z.F. Ma, Q. Gong, Y.S. He, L. Pei, and L.J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochem. Commun., 10(2008), No. 5, p. 691. doi: 10.1016/j.elecom.2008.02.017
    [21]
    M.Y. Yan, G.B. Zhang, Q.L. Wei, X.C. Tian, K.N. Zhao, Q.Y. An, L. Zhou, Y.L. Zhao, C.J. Niu, W.H. Ren, L. He, and L.Q. Mai, In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode, Nano Energy, 22(2016), p. 406. doi: 10.1016/j.nanoen.2016.01.031
    [22]
    M. Petzl, M. Kasper, and M.A. Danzer, Lithium plating in a commercial lithium-ion battery: A low-temperature aging study, J. Power Sources, 275(2015), p. 799. doi: 10.1016/j.jpowsour.2014.11.065
    [23]
    M.G. Ouyang, Z.Y. Chu, L.G. Lu, J.Q. Li, X.B. Han, X.N. Feng, and G.M. Liu, Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles, J. Power Sources, 286(2015), p. 309. doi: 10.1016/j.jpowsour.2015.03.178
    [24]
    Z.H. Sun, Z. Li, L.F. Gao, X. Zhao, D.X. Han, S.Y. Gan, S.J. Guo, and L. Niu, Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzero-temperature high-capacity lithium-ion storage via a diazonium soft-chemistry method, Adv. Energy Mater., 9(2019), No. 6, art. No. 1802946. doi: 10.1002/aenm.201802946
    [25]
    P. He, X. Zhang, Y.G. Wang, L. Cheng, and Y.Y. Xia, Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions, J. Electrochem. Soc., 155(2008), No. 2, art. No. A144. doi: 10.1149/1.2815609
    [26]
    D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, and S. Fujitani, Study of LiFePO4 by cyclic voltammetry, J. Electrochem. Soc., 154(2007), No. 4, p. A253. doi: 10.1149/1.2434687
    [27]
    Z. Yang, Q. Huang, S.J. Li, and J. Mao, High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries, J. Alloys Compd., 753(2018), p. 192. doi: 10.1016/j.jallcom.2018.04.105
    [28]
    M. Gaberscek, R. Dominko, and J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes Electrochem. Commun., 9(2007), No. 12, p. 2778. doi: 10.1016/j.elecom.2007.09.020
    [29]
    S.S. Zhang, K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochim. Acta, 51(2006), No. 8-9, p. 1636. doi: 10.1016/j.electacta.2005.02.137
    [30]
    S.S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, J. Power Sources, 163(2007), No. 2, p. 713. doi: 10.1016/j.jpowsour.2006.09.040
    [31]
    B.V. Ratnakumar, M.C. Smart, and S. Surampudi, Effects of SEI on the kinetics of lithium intercalation, J. Power Sources, 97-98(2001), p. 137. doi: 10.1016/S0378-7753(01)00682-6
    [32]
    B.K. Mandal, A.K. Padhi, Z. Shi, S. Chakraborty, and R. Filler, New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries, J. Power Sources, 162(2006), No. 1, p. 690. doi: 10.1016/j.jpowsour.2006.06.053
    [33]
    L. Zhou and B.L. Lucht, Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC), J. Power Sources, 205(2012), p. 439. doi: 10.1016/j.jpowsour.2012.01.067
    [34]
    G.X. Wang, H.C. Kang, M. Chen, K.P. Yan, X.S. Hu, and E.J. Cairns, Effects of solvents on the electrochemical performance of LiFePO4/C composite electrodes, ChemElectroChem, 4(2017), No. 2, p. 376. doi: 10.1002/celc.201600525
    [35]
    K. Zaghib, M. Dontigny, P. Perret, A. Guerfi, M. Ramanathan, J. Prakash, A. Mauger, and C.M. Julien, Electrochemical and thermal characterization of lithium titanate spinel anode in C-LiFePO4//C-Li4Ti5O12 cells at sub-zero temperatures, J. Power Sources, 248(2014), p. 1050. doi: 10.1016/j.jpowsour.2013.09.083
    [36]
    G.J. Xu, Z.H. Liu, C.J. Zhang, G.L. Cui, and L.Q. Chen, Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A, 3(2015), No. 8, p. 4092. doi: 10.1039/C4TA06264G
    [37]
    J.G. Han, K. Kim, Y. Lee, and N.S. Choi, Scavenging materials: Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries, Adv. Mater., 31(2019), No. 20, art. No. 1970148. doi: 10.1002/adma.201970148
    [38]
    L.F. Li, S.S. Zhou, H.B. Han, H. Li, J. Nie, M. Armand, Z.B. Zhou, and X.J. Huang, Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents, J. Electrochem. Soc., 158(2011), No. 2, art. No. A74. doi: 10.1149/1.3514705
    [39]
    J. Li, C.F. Yuan, Z.H. Guo, Z.A. Zhang, Y.Q. Lai, and J. Liu, Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells, Electrochim. Acta, 59(2012), p. 69. doi: 10.1016/j.electacta.2011.10.041
    [40]
    S.S. Zhang, K. Xu, and T.R. Jow, A new approach toward improved low temperature performance of Li-ion battery, Electrochem. Commun., 4(2002), No. 11, p. 928. doi: 10.1016/S1388-2481(02)00490-3
    [41]
    K. Xu, S.S. Zhang, U. Lee, J.L. Allen, and T.R. Jow, LiBOB: Is it an alternative salt for lithium ion chemistry, J. Power Sources, 146(2005), No. 1-2, p. 79. doi: 10.1016/j.jpowsour.2005.03.153
    [42]
    S.S. Zhang, K. Xu, and T.R. Jow, An improved electrolyte for the LiFePO4 cathode working in a wide temperature range, J. Power Sources, 159(2006), No. 1, p. 702. doi: 10.1016/j.jpowsour.2005.11.042
    [43]
    H.M. Zhou, F.R. Liu, and J. Li, Preparation, thermal stability and electrochemical properties of LiODFB, J. Mater. Sci. Technol., 28(2012), No. 8, p. 723. doi: 10.1016/S1005-0302(12)60121-2
    [44]
    S.Y. Li, W. Zhao, X.L. Cui, Y.Y. Zhao, B.C. Li, H.M. Zhang, Y.L. Li, G.X. Li, X.S. Ye, and Y.C. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries, Electrochim. Acta, 91(2013), p. 282. doi: 10.1016/j.electacta.2013.01.011
    [45]
    S.Y. Li, W. Zhao, Z.F. Zhou, X.L. Cui, Z.C. Shang, H.N. Liu, and D.Q. Zhang, Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 7, p. 4920. doi: 10.1021/am405973x
    [46]
    S.Y. Li, X.P. Li, J.L. Liu, Z.C. Shang, and X.L. Cui, A low-temperature electrolyte for lithium-ion batteries, Ionics, 21(2015), No. 4, p. 901. doi: 10.1007/s11581-014-1275-0
    [47]
    L.J. Zhang, Y.X. Sun, Y. Zhou, C.X. Hai, S.Q. Hu, J.B. Zeng, Y. Shen, S.D. Dong, G.C. Qi, and F.Q. Li, Investigation of the synergetic effects of LiBF4 and LiODFB as wide-temperature electrolyte salts in lithium-ion batteries, Ionics, 24(2018), No. 10, p. 2995. doi: 10.1007/s11581-018-2470-1
    [48]
    G. Xu, X. Shangguan, S. Dong, X. Zhou, and G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries, Angew. Chem. Int. Ed., 59(2020), No. 9, p. 3400. doi: 10.1002/anie.201906494
    [49]
    F.Q. Li, Y. Gong, G.F. Jia, Q.L. Wang, Z.J. Peng, W. Fan, and B. Bai, A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability, J. Power Sources, 295(2015), p. 47. doi: 10.1016/j.jpowsour.2015.06.117
    [50]
    D. Luo, M. Li, Y. Zheng, Q.Y. Ma, R. Gao, Z. Zhang, H.Z. Dou, G.B. Wen, L.L. Shui, A.P. Yu, X. Wang, and Z.W. Chen, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci., 8(2021), No. 18, art. No. e2101051. doi: 10.1002/advs.202101051
    [51]
    L.X. Liao, X.Q. Cheng, Y.L. Ma, P.J. Zuo, W. Fang, G.P. Yin, and Y.Z. Gao, Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochim. Acta, 87(2013), p. 466. doi: 10.1016/j.electacta.2012.09.083
    [52]
    B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, J.C. Zhao, and F. Wu, Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, J. Solid State Electrochem., 17(2013), No. 3, p. 811. doi: 10.1007/s10008-012-1927-9
    [53]
    L.X. Liao, T. Fang, X.G. Zhou, Y.Z. Gao, X.Q. Cheng, L.L. Zhang, and G.P. Yin, Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive, Solid State Ionics, 254(2014), p. 27. doi: 10.1016/j.ssi.2013.10.047
    [54]
    B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, G.C. Yang, and Z. Sun, Lithium insertion/desertion properties of LiFePO4 cathode in a low temperature electrolyte modified with sodium chloride additive, Solid State Ionics, 260(2014), p. 8. doi: 10.1016/j.ssi.2014.03.006
    [55]
    X.Y. Zhao, J.L. Wang, X.D. Yan, and L.Z. Zhang, Effect of nitrile group functionalized organosilicon as electrolyte additive on low-temperature performance of LiFePO4 battery, Chem. J. Chin. Univ., 40(2019), No. 6, p. 1258.
    [56]
    H.B. Rong, M.Q. Xu, L.D. Xing, and W.S. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate-based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP), J. Power Sources, 261(2014), p. 148. doi: 10.1016/j.jpowsour.2014.03.032
    [57]
    B.R. Wu, Y.H. Ren, D.B. Mu, C. Zhang, X. Liu, and F. Wu, Enhanced low temperature performance of LiFePO4 cathode with electrolyte modification, Int. J. Electrochem. Sci., 8(2013), p. 8502.
    [58]
    A.M. Haregewoin, A.S. Wotango, and B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: Progress and perspectives, Energy Environ. Sci., 9(2016), No. 6, p. 1955. doi: 10.1039/C6EE00123H
    [59]
    A. Tron, S. Jeong, Y.D. Park, and J. Mun, Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation, ACS Sustain. Chem. Eng., 7(2019), No. 17, p. 14531. doi: 10.1021/acssuschemeng.9b02042
    [60]
    A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro, R. May, C.T. Yang, L.E. Marbella, Y. Qi, and M.T. McDowell, Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase, ACS Energy Lett., 5(2020), No. 7, p. 2411. doi: 10.1021/acsenergylett.0c01209
    [61]
    T.T. Gao, B. Wang, L. Wang, G.J. Liu, F. Wang, H. Luo, and D.L. Wang, LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries, Electrochim. Acta, 286(2018), p. 77. doi: 10.1016/j.electacta.2018.08.033
    [62]
    Y.S. Ye, J. Rick, and B.J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A, 1(2013), No. 8, p. 2719. doi: 10.1039/C2TA00126H
    [63]
    N. Böckenfeld, M. Willeke, J. Pires, M. Anouti, and A. Balducci, On the use of lithium iron phosphate in combination with protic ionic liquid-based electrolytes, J. Electrochem. Soc., 160(2013), No. 4, p. A559. doi: 10.1149/2.027304jes
    [64]
    J.S. Moreno, Y. Deguchi, S. Panero, B. Scrosati, H. Ohno, E. Simonetti, and G.B, Appetecchi, N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems, Electrochim. Acta, 191(2016), p. 624. doi: 10.1016/j.electacta.2016.01.119
    [65]
    Q. Zhao, X. Liu, S. Stalin, K. Khan, and L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries, Nat. Energy, 4(2019), No. 5, p. 365. doi: 10.1038/s41560-019-0349-7
    [66]
    A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, and S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 43(2008), No. 8-9, p. 1913. doi: 10.1016/j.materresbull.2007.08.031
    [67]
    J.Y. Song, Y.Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources, 77(1999), No. 2, p. 183. doi: 10.1016/S0378-7753(98)00193-1
    [68]
    D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326. doi: 10.1016/j.chempr.2019.05.009
    [69]
    J. Mindemark, M.J. Lacey, T. Bowden, and D. Brandell, Beyond PEO−alternative host materials for Li+-conducting solid polymer electrolytes, Prog. Polym. Sci., 81(2018), p. 114. doi: 10.1016/j.progpolymsci.2017.12.004
    [70]
    Z.J. Sun, Y.H. Li, S.Y. Zhang, L. Shi, H. Wu, H.T. Bu, and S.J. Ding, g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability, J. Mater. Chem. A, 7(2019), No. 18, p. 11069. doi: 10.1039/C9TA00634F
    [71]
    Z.G. Xue, D. He, and X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 38, p. 19218. doi: 10.1039/C5TA03471J
    [72]
    H. Duan, Y.X. Yin, X.X. Zeng, J.Y. Li, J.L. Shi, Y. Shi, R. Wen, Y.G. Guo, and L.J. Wan, In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries, Energy Storage Mater., 10(2018), p. 85. doi: 10.1016/j.ensm.2017.06.017
    [73]
    S.J. Xu, Z.H. Sun, C.G. Sun, F. Li, K. Chen, Z.H. Zhang, G.J. Hou, H.M. Cheng, and F. Li, Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature, Adv. Funct. Mater., 30(2020), No. 51, art. No. 2007172. doi: 10.1002/adfm.202007172
    [74]
    J. Yu, J.P. Liu, X.D. Lin, H.M. Law, G.D. Zhou, S.C.T. Kwok, M.J. Robson, J.X. Wu, and F. Ciucci, A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range, Energy Storage Mater., 37(2021), p. 609. doi: 10.1016/j.ensm.2021.02.045
    [75]
    J.Q. Zhou, H.Q. Ji, Y.J. Qian, J. Liu, T.Y. Yan, C.L. Yan, and T. Qian, Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 41, p. 48810. doi: 10.1021/acsami.1c14825
    [76]
    Z.H. Lin and J. Liu, Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte, RSC Adv., 9(2019), No. 59, p. 34601. doi: 10.1039/C9RA07781B
    [77]
    Z.Y. Lin, X.W. Guo, and H.J. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery, Nano Energy, 41(2017), p. 646. doi: 10.1016/j.nanoen.2017.10.021
    [78]
    Z.Y. Lin, X.W. Guo, Z.C. Wang, B.Y. Wang, S.M. He, L.A. O'Dell, J. Huang, H. Li, H.J. Yu, and L.Q. Chen, A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery, Nano Energy, 73(2020), art. No. 104786. doi: 10.1016/j.nanoen.2020.104786
    [79]
    L.F. Hu, Z.L. Tang, and Z.T. Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4, J. Power Sources, 166(2007), No. 1, p. 226. doi: 10.1016/j.jpowsour.2007.01.028
    [80]
    K. Hanai, T. Maruyama, N. Imanishi, et al., Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode, J. Power Sources, 178(2008), No. 2, p. 789. doi: 10.1016/j.jpowsour.2007.10.004
    [81]
    Y. Liu, J.Y. Lee, and L. Hong, In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes, J. Power Sources, 129(2004), No. 2, p. 303. doi: 10.1016/j.jpowsour.2003.11.026
    [82]
    H.M.J.C. Pitawala, M.A.K.L. Dissanayake, and V.A. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf, Solid State Ionics, 178(2007), No. 13-14, p. 885. doi: 10.1016/j.ssi.2007.04.008
    [83]
    H.Y. Guan, F. Lian, Y. Ren, Y. Wen, X.R. Pan, and J.L. Sun, Comparative study of different membranes as separators for rechargeable lithium-ion batteries, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 598. doi: 10.1007/s12613-013-0772-x
    [84]
    F. Lv, K.X. Liu, Z.Y. Wang, J.F. Zhu, Y. Zhao, and S. Yuan, Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature, J. Colloid Interface Sci., 596(2021), p. 257. doi: 10.1016/j.jcis.2021.02.095
    [85]
    W.L. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C.X. He, J.Q. Huang, and Q. Zhang, A review on energy chemistry of fast-charging anodes, Chem. Soc. Rev., 49(2020), No. 12, p. 3806. doi: 10.1039/C9CS00728H
    [86]
    G.A. Collins, H. Geaney, and K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries, J. Mater. Chem. A, 9(2021), No. 25, p. 14172. doi: 10.1039/D1TA00998B
    [87]
    A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch, P. Niehoff, F.M. Schappacher, and M. Winter, Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior, J. Power Sources, 363(2017), p. 70. doi: 10.1016/j.jpowsour.2017.07.062
    [88]
    Y. Ji, Y.C. Zhang, and C.Y. Wang, Li-ion cell operation at low temperatures, J. Electrochem. Soc., 160(2013), No. 4, p. A636. doi: 10.1149/2.047304jes
    [89]
    J. Xu, X. Wang, N.Y. Yuan, B.Q. Hu, J.N. Ding, and S.H. Ge, Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance, J. Power Sources, 430(2019), p. 74. doi: 10.1016/j.jpowsour.2019.05.024
    [90]
    K. Xu, A. von Cresce, and U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir, 26(2010), No. 13, p. 11538. doi: 10.1021/la1009994
    [91]
    L. Zhao, Y.S. Hu, H. Li, Z.X. Wang, and L.Q. Chen, Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids f7or Li-ion batteries, Adv. Mater., 23(2011), No. 11, p. 1385. doi: 10.1002/adma.201003294
    [92]
    E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, and T. Kallio, Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures, J. Phys. Chem. C, 119(2015), No. 5, p. 2277. doi: 10.1021/jp509428c
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2724) PDF Downloads(275) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return